Learning Objectives

Review tree runtimes and introduce more tree terminology

Introduce the AVL tree

Demonstrate how AVL tree rotations work
BST Analysis – Running Time

<table>
<thead>
<tr>
<th>Operation</th>
<th>BST Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$O(h)$</td>
</tr>
<tr>
<td>insert</td>
<td>$O(h)$</td>
</tr>
<tr>
<td>delete</td>
<td>$O(h)$</td>
</tr>
<tr>
<td>traverse</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

![Binary Search Tree Diagram]
BST Analysis

Every operation on a BST depends on the **height** of the tree.

… how do we relate $O(h)$ to n, the size of our dataset?
BST Analysis

What is the max number of nodes in a tree of height h?
BST Analysis

What is the min number of nodes in a tree of height h ?
BST Analysis

A BST of n nodes has a height between:

Lower-bound: $O(\log n)$

Upper-bound: $O(n)$
Fixing Tree Height

1. Only use trees with certain pre-defined properties

2. Make sure the order of our insert is near perfect

3. Correct an unbalanced tree when we see it
Tree Property: “Full”

A tree F is **full** if (and only if) for each node n:

n has zero children

OR

n has two children (which are full trees)
Tree Property: “Full”

Given n nodes, what are the min and max height of a full tree?
Tree Property: “Full”

Given n nodes, what are the min and max height of a **full tree**?
Tree Property: “Perfect”

A **perfect** tree P_h is a tree of height h where:

- Every internal node has two children

 AND

- Every leaf has the same depth / level in the tree
Tree Property: “Perfect”

Given n nodes, what are the min and max height of a perfect tree?
Tree Property: “Perfect”

Given n nodes, what are the min and max height of a perfect tree?
Tree Property: “Complete”

A **complete** tree C_h is a tree of height h where:

Every level is completely filled except the last

AND

Every leaf in the last level is ‘pushed to the left’
Tree Property: “Complete”

Given n nodes, what are the min and max height of a complete tree?
Tree Property: “Complete”

Given n nodes, what are the min and max height of a complete tree?
Tree Properties

A node in a full tree contains either zero or two children anywhere.

Only the leaves in a perfect tree contain zero children. (All other have 2)

All leaves in a perfect tree are at the same level.

Every level in the complete tree is full except the last level.

The last level is ‘pushed to the level’ in a complete tree.
Tree Properties

What properties does the following tree have (Full, Complete, Perfect)?
Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]
AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!
Height-Balanced Tree

What tree is better?

Height balance: \(b = \text{height}(T_R) - \text{height}(T_L) \)

A tree is “balanced” if:
BST Rotations (The AVL Tree)

We can adjust the BST structure by performing **rotations**.

These rotations:

1.
2.
BST Rotations (The AVL Tree)

We can adjust the BST structure by performing rotations.
Left Rotation
Left Rotation
Coding AVL Rotations

Two ways of visualizing:

Think of an arrow ‘rotating’ around the center

Recognize that there’s a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?

Replace current (root) node with it’s right child.

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child
Right Rotation
Right Rotation
Somethings not quite right...
LeftRight Rotation

38

13

51

10

25

37
LeftRight Rotation

Left @13

Right @38
RightLeft Rotation
AVL Rotations

Four kinds of rotations:
AVL Rotations

Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:
AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates *when necessary*

How does the constraint on balance affect the core functions?

Find

Insert

Remove
AVL Find

Find(7)
AVL Insertion

```python
def insert_helper(node, key, val):
    if node == None:
        return avlNode(key, val)
    if key < node.key:
        node.left = insert_helper(node.left, key, val)
    else:
        node.right = insert_helper(node.right, key, val)
    return rebalance(node)
```
AVL Insertion

```python
def insert_helper(node, key, val):
    ...
    return rebalance(node)
```

(_insert(6.5))
Theorem:
If an insertion occurred in subtrees t_3 or t_4 and an imbalance was first detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t is ______ and the balance factor of t-right is ______.
Theorem:
If an insertion occurred in subtrees t_1 or t_2 and an imbalance was first detected at t, then a ____________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t is ______ and the balance factor of t->left is ______.
Rebalancing on insert

Theorem:
If an insertion occurred in subtrees t_2 or t_3 and an imbalance was first detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t is ______ and the balance factor of t->right is ______.
Rebalancing on insert

Theorem:
If an insertion occurred in subtrees \(t_2 \) or \(t_3 \) and an imbalance was first detected at \(t \), then a __________ rotation about \(t \) restores the balance of the tree.

We gauge this by noting the balance factor of \(t \) is ______ and the balance factor of \(t->\text{left} \) is ______.
Rebalancing on insert
AVL Insertion Practice

_insert(14)
AVL Insertion Practice

_insert(14)
AVL Remove

_remove(10)
AVL Remove

-remove(10)
AVL Remove

_remove(10)
AVL Remove

1) find(10)
2) find(IOP / IOS)
3) swap and remove
4) rebalance
5) recurse

_remove(10)
AVL Tree Analysis

For AVL tree of height h, we know:

- find runs in: __________.
- insert runs in: __________.
- remove runs in: __________.

We will argue that: h is __________.