Algorithms and Data Structures for Data Science AVL Trees

CS 277
April 3, 2023
Brad Solomon

Learning Objectives

Review tree runtimes and introduce more tree terminology

Introduce the AVL tree

Demonstrate how AVL tree rotations work

BST Analysis - Running Time

	BST Worst Case
find	$O(h)$
insert	$O(h)$
delete	$O(h)$
traverse	$O(n)$

BST Analysis

Every operation on a BST depends on the height of the tree.
... how do we relate $O(h)$ to n, the size of our dataset?

BST Analysis

What is the max number of nodes in a tree of height h ?

BST Analysis

What is the min number of nodes in a tree of height h ?

BST Analysis

A BST of n nodes has a height between:
Lower-bound: $O(\log n)$

Upper-bound: $O(n)$

Fixing Tree Height

1. Only use trees with certain pre-defined properties
2. Make sure the order of our insert is near perfect
3. Correct an unbalanced tree when we see it

Tree Property:"Full"

A tree F is full if (and only if) for each node n :
n has zero children
OR
n has two children (which are full trees)

Tree Property:"Full"

Given n nodes, what are the min and max height of a full tree?

Tree Property:"Full"

Given n nodes, what are the min and max height of a full tree?

Tree Property:"Perfect"

A perfect tree P_{h} is a tree of height h where:
Every internal node has two children
AND

Every leaf has the same depth / level in the tree

Tree Property:"Perfect"

Given n nodes, what are the \min and max height of a perfect tree?

Tree Property:"Perfect"

Given n nodes, what are the \min and max height of a perfect tree?

Tree Property:"Complete"

A complete tree C_{h} is a tree of height h where:
Every level is completely filled except the last

$$
A N D
$$

Every leaf in the last level is 'pushed to the left'

Tree Property:"Complete"

Given n nodes, what are the min and max height of a complete tree?

Tree Property:"Complete"

Given n nodes, what are the min and max height of a complete tree?

Tree Properties

A node in a full tree contains either zero or two children anywhere

Only the leaves in a perfect tree contain zero children. (All other have 2)

All leaves in a perfect tree are at the same level

Every level in the complete tree is full except the last level

The last level is 'pushed to the level' in a complete tree

Tree Properties

What properties does the following tree have (Full, Complete, Perfect)?

Correcting bad insert order

The height of a BST depends on the order in which the data was inserted Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!

Height-Balanced Tree

What tree is better?

Height balance: $b=\operatorname{height}\left(T_{R}\right)-\operatorname{height}\left(T_{L}\right)$
A tree is "balanced" if:

BST Rotations (The AVL Tree)

We can adjust the BST structure by performing rotations.

These rotations:
1.
2.

BST Rotations (The AVL Tree)

We can adjust the BST structure by performing rotations.

Left Rotation

Left Rotation

Coding AVL Rotations

Two ways of visualizing:
Think of an arrow 'rotating' around the center

Recognize that there's a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?
Replace current (root) node with it's right child.
Set the right child's left child to be the current node's right
Make the current node the right child's left child

Right Rotation

Right Rotation

AVL Rotation Practice

AVL Rotation Practice

Somethings not quite right...

LeftRight Rotation

LeftRight Rotation

RightLeft Rotation

AVL Rotations

AVL Rotations

Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant
3. The rotations maintain BST property

Goal:

AVL Rotation Practice

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?
Find

Insert

Remove

AVL Find

AVL Insertion

AVL Insertion

[^0]return rebalance(node)

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees $\mathrm{t}_{\mathbf{3}}$ or \mathbf{t}_{4} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->right is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees $\mathbf{t}_{\mathbf{1}}$ or $\mathbf{t}_{\mathbf{2}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->left is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees t_{2} or $\mathbf{t}_{\mathbf{3}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->right is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees t_{2} or t_{3} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->left is \qquad .

Rebalancing on insert

AVL Insertion Practice

AVL Insertion Practice

AVL Remove

AVL Remove

AVL Remove

AVL Remove

AVL Remove

AVL Remove

AVL Tree Analysis

For AVL tree of height h, we know:
find runs in: \qquad .
insert runs in: \qquad .
remove runs in: \qquad .

We will argue that: h is \qquad .

[^0]: def insert_helper(node, key, val):

