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Nearest Neighbor Search



Learning Objectives

Review BST implementations

Discuss applications of BSTs

Introduce nearest neighbor search using images

An overview of the KD-Tree (You will not be implementing!)

An overview of the Huffman tree



BST Find
def find_helper(node,key): 
    if not node: 
        return None 
     
    if node.key == key: 
        return node 
     
    if node.key > key:  
        return find_helper(node.left, key) 
     
    if node.key < key: 
        return find_helper(node.right, key) 
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BST Find
def find_helper(node,key): 
    if not node: 
        return None 
     
    if node.key == key: 
        return node 
     
    if node.key > key:  
        find_helper(node.left, key) 
     
    if node.key < key: 
        find_helper(node.right, key) 
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BST Insert
def insert_helper(node, key, value): 
    if node == None: 
        return bstNode(key, value) 
     
    if node.key > key: 
        node.left = insert_helper(node.left, key, value) 
    if node.key < key: 
        node.right = insert_helper(node.right, key, value) 
    return node 
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BST Insert
def insert_helper(node, key, value): 
    if node == None: 
        return bstNode(key, value) 
     
    if node.key > key: 
        insert_helper(node.left, key, value) 
    if node.key < key: 
        insert_helper(node.right, key, value) 
    return node 
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BST Insert
def insert_helper(node, key, value): 
    if node == None: 
        return bstNode(key, value) 
     
    if node.key > key: 
        node.left = insert_helper(node.left, key, value) 
    if node.key < key: 
        node.right = insert_helper(node.right, key, value) 
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BST Remove
def remove_helper(node, key): 
    if node == None: 
        return None 
     
    if node.key > key:  
        node.left = remove_helper(node.left, key) 
    if node.key < key: 
        node.right = remove_helper(node.right, key) 
    if node.key == key: 
        if node.left == None and node.right == None: 
            return None 
        elif node.left == None: 
            return node.right  
        elif node.right == None: 
            return node.left  

        iop = findIOP(node) 
        node.key = iop.key 
        node.val = iop.val 
        node.left = remove_helper(node.left, iop.key) 

    return node 
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BST Analysis – Running Time

BST Worst Case

find O(h)

insert O(h)

delete O(h)

traverse O(n)
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When would we use a tree?
Pretend for a moment that we always have an optimal BST.

What is the running time of find? 

What is the running time of insert? 

What is the running time of remove? 

Is there a data structure with a better running time for all of these?



Advantages of trees
The running time for a balanced tree is always O(log n)

The structure of a tree can have underlying meaning

Ex: Huffman Trees for Huffman encoding

Trees can be used to find the nearest neighbor



Nearest Neighbor Find
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Nearest Neighbor Find
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Nearest Neighbor Find
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Nearest Neighbor Find
def fnn_helper(node,key): 
    if not node: 
        return None 
     
    if node.key == key: 
        return node 
     
    if node.key > key:  
        temp = fnn_helper(node.left, key) 
     
    if node.key < key: 
        temp = fnn_helper(node.right, key) 

# Nearest neighbor is either node.val (curr node) 
# OR the nearest neighbor found in the subtree
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Real World Use Case: Nearest neighbor search

Given the collection above, what is the closest match to the color below?



Real World Use Case: Nearest neighbor search

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

(90, 75, 50)

Given the collection above, what is the closest match to the color below?



Euclidean Distance
The distance between two points is the length of a line between them

1D: d(p, q) = (p − q)2

2D: d(p, q) = (p0 − q0)2 + (p1 − q1)2

3D: d(p, q) = (p0 − q0)2 + (p1 − q1)2 + + (p2 − q2)2



Real World Use Case: Nearest neighbor search

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

(90, 75, 50)
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Real World Use Case: Nearest neighbor search



Real World Use Case: Nearest neighbor search

[[ 11 172  37],[225 191  57],[184 130  34],[136  33  51],[ 26 220  67]]

[[ 45 218   0],[223 147 243],[116  57 223],[187   9   9],[238 208 236]]

[[216 190  15],[193  64  80],[184  35 215],[ 95 152 180],[128  36  41]]

[[101 128  53],[224 122 191],[237 212  74],[ 35  98 227],[214  66 167]]

[[188   3 211],[217 142  33],[210 229 167],[208  57  22],[  3 213 235]]

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

We can reduce the total number of calculations by averaging colors



Real World Use Case: Nearest neighbor search

+



Real World Use Case: Nearest neighbor search

+



Naive Nearest Neighbor Search
1. Create a method of getting the Euclidean distance between points

exactColorDist(c1, c2)

2. Create a method of getting the average color for a subset of the image
getAverageColor(numArray, rstart=0, cstart=0, rlen=None, clen=None)

3. For each sub-image of a large image, get the closest matching tile
getClosestColor(inlist, query)



Naive Nearest Neighbor Search
Pros: 

Cons: 



BST Nearest Neighbor Search
Rather than compare every sub-image to every tile, we want to build a BST!

… what is the smallest point in a 2D plane?



BST Nearest Neighbor Search
Rather than compare every sub-image to every tile, we want to build a BST!

… what is the smallest point in a 2D plane?

Problem: There’s no obvious order in multi-dimensional space!

We can reduce the dimensions to create an arbitrary order, but lose precision



BST Nearest Neighbor Search
Because our input set is colors, there is at least one dimensional reduction



BST Nearest Neighbor Search
Because our input set is colors, there is at least one dimensional reduction

L = = 0.299R + 0.587G + 0.114B

Instead of a 3D RGB value, we can store a 1D luminance value:



BST Nearest Neighbor Search
1. Create a method of comparing 1D ‘sizes’ of 3D objects

getLum(c1)

2. Build a luminance BST that stores 3D objects based on their 1D size
lum_tree_insert(root, key, value)

3. Implement a nearest neighbor search on the luminance BST
lum_tree_find(root, key)



Luminance Nearest Neighbor Search
Pros: 

Cons: 



The k-dimension tree (KD-tree)

Imagine we have a set of two dimensional points…

Images made by Jenny Chen (former CS 225 CA)



The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension: 
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The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time
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The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension: 



The k-dimension tree (KD-tree)
At every level, we essentially partition our tree in half:



KD-Tree Construction Example
Imagine I wanted to build a KD-tree with the following points in order:

(7, 2), (5, 4), (9, 6), (2, 3), (8, 1), (4, 7)



KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))



KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))



KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))



KD-tree Search

The leaf we find only tells us the maximum radius we need to search

search((6, 3))



KD-tree Search

As we go back up the tree, we decide if our point is closer to our query

search((6, 3))



KD-tree Search
Since our splitting point was within our search radius, we also have to 
check if there’s a closer point in the other subtree

search((6, 3))



KD-tree Search

We repeat this process all the way up to the root…

search((6, 3))



KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))



KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))



KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))



KD-tree Search

This strategy is worst case O(n) but on average O(log n). 

search((6, 3))



KD-Tree Nearest Neighbor Search
Pros: 

Cons: 



KD-Tree in CS 277

from scipy.spatial import KDTree 

l = [(255, 0, 0), (255, 255, 0), (0, 255, 0), (0, 
255, 255), (0,0,255), (255,0,255)] 

kdt = KDTree(l) 
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You do not need to know how to implement a KD-tree

You should know that it is the optimal solution to 100% accuracy NNS

You should understand conceptually how a KD-tree is built



Friday: A different tree application



Next Week: Addressing the ‘height’ problem

BST Worst Case

find O(h)

insert O(h)

delete O(h)

traverse O(n)
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