
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

March 29, 2023

Nearest Neighbor Search

Learning Objectives

Review BST implementations

Discuss applications of BSTs

Introduce nearest neighbor search using images

An overview of the KD-Tree (You will not be implementing!)

An overview of the Huffman tree

BST Find
def find_helper(node,key):
 if not node:
 return None

 if node.key == key:
 return node

 if node.key > key:
 return find_helper(node.left, key)

 if node.key < key:
 return find_helper(node.right, key)

1
2
3
4
5
6
7
8
9

10
11
12 1

63

5

4 7

find(4)

BST Find
def find_helper(node,key):
 if not node:
 return None

 if node.key == key:
 return node

 if node.key > key:
 find_helper(node.left, key)

 if node.key < key:
 find_helper(node.right, key)

1
2
3
4
5
6
7
8
9

10
11
12 1

63

5

4 7

find(4)

BST Insert
def insert_helper(node, key, value):
 if node == None:
 return bstNode(key, value)

 if node.key > key:
 node.left = insert_helper(node.left, key, value)
 if node.key < key:
 node.right = insert_helper(node.right, key, value)
 return node

1
2
3
4
5
6
7
8
9

1

63

5

4 7

insert(5)

BST Insert
def insert_helper(node, key, value):
 if node == None:
 return bstNode(key, value)

 if node.key > key:
 insert_helper(node.left, key, value)
 if node.key < key:
 insert_helper(node.right, key, value)
 return node

1
2
3
4
5
6
7
8
9

1

63

5

4 7

insert(5)

BST Insert
def insert_helper(node, key, value):
 if node == None:
 return bstNode(key, value)

 if node.key > key:
 node.left = insert_helper(node.left, key, value)
 if node.key < key:
 node.right = insert_helper(node.right, key, value)

1
2
3
4
5
6
7
8
9

1

63

5

4 7

insert(5)

BST Remove
def remove_helper(node, key):
 if node == None:
 return None

 if node.key > key:
 node.left = remove_helper(node.left, key)
 if node.key < key:
 node.right = remove_helper(node.right, key)
 if node.key == key:
 if node.left == None and node.right == None:
 return None
 elif node.left == None:
 return node.right
 elif node.right == None:
 return node.left

 iop = findIOP(node)
 node.key = iop.key
 node.val = iop.val
 node.left = remove_helper(node.left, iop.key)

 return node

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

63

5

4 7

remove(3)

BST Analysis – Running Time

BST Worst Case

find O(h)

insert O(h)

delete O(h)

traverse O(n)

95

7

61

7

9

5

1

6

When would we use a tree?
Pretend for a moment that we always have an optimal BST.

What is the running time of find?

What is the running time of insert?

What is the running time of remove?

Is there a data structure with a better running time for all of these?

Advantages of trees
The running time for a balanced tree is always O(log n)

The structure of a tree can have underlying meaning

Ex: Huffman Trees for Huffman encoding

Trees can be used to find the nearest neighbor

Nearest Neighbor Find

13

10 25

12 37

38

51

40 84

8966

95

FNN(70)

Nearest Neighbor Find

13

10 25

12 37

38

51

40 84

8966

95

FNN(27)

Nearest Neighbor Find

13

10 25

12 37

38

51

40 84

8966

95

FNN(14)

Nearest Neighbor Find
def fnn_helper(node,key):
 if not node:
 return None

 if node.key == key:
 return node

 if node.key > key:
 temp = fnn_helper(node.left, key)

 if node.key < key:
 temp = fnn_helper(node.right, key)

Nearest neighbor is either node.val (curr node)
OR the nearest neighbor found in the subtree

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1

63

5

4 7

FNN(4)

Real World Use Case: Nearest neighbor search

Given the collection above, what is the closest match to the color below?

Real World Use Case: Nearest neighbor search

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

(90, 75, 50)

Given the collection above, what is the closest match to the color below?

Euclidean Distance
The distance between two points is the length of a line between them

1D: d(p, q) = (p − q)2

2D: d(p, q) = (p0 − q0)2 + (p1 − q1)2

3D: d(p, q) = (p0 − q0)2 + (p1 − q1)2 + + (p2 − q2)2

Real World Use Case: Nearest neighbor search

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

(90, 75, 50)

188

249
207

287 236 274

Real World Use Case: Nearest neighbor search

Real World Use Case: Nearest neighbor search

[[11 172 37],[225 191 57],[184 130 34],[136 33 51],[26 220 67]]

[[45 218 0],[223 147 243],[116 57 223],[187 9 9],[238 208 236]]

[[216 190 15],[193 64 80],[184 35 215],[95 152 180],[128 36 41]]

[[101 128 53],[224 122 191],[237 212 74],[35 98 227],[214 66 167]]

[[188 3 211],[217 142 33],[210 229 167],[208 57 22],[3 213 235]]

(255, 0, 0) (255, 255, 0) (0, 255, 0) (0, 255, 255) (0,0,255) (255,0,255)

We can reduce the total number of calculations by averaging colors

Real World Use Case: Nearest neighbor search

+

Real World Use Case: Nearest neighbor search

+

Naive Nearest Neighbor Search
1. Create a method of getting the Euclidean distance between points

exactColorDist(c1, c2)

2. Create a method of getting the average color for a subset of the image
getAverageColor(numArray, rstart=0, cstart=0, rlen=None, clen=None)

3. For each sub-image of a large image, get the closest matching tile
getClosestColor(inlist, query)

Naive Nearest Neighbor Search
Pros:

Cons:

BST Nearest Neighbor Search
Rather than compare every sub-image to every tile, we want to build a BST!

… what is the smallest point in a 2D plane?

BST Nearest Neighbor Search
Rather than compare every sub-image to every tile, we want to build a BST!

… what is the smallest point in a 2D plane?

Problem: There’s no obvious order in multi-dimensional space!

We can reduce the dimensions to create an arbitrary order, but lose precision

BST Nearest Neighbor Search
Because our input set is colors, there is at least one dimensional reduction

BST Nearest Neighbor Search
Because our input set is colors, there is at least one dimensional reduction

L = = 0.299R + 0.587G + 0.114B

Instead of a 3D RGB value, we can store a 1D luminance value:

BST Nearest Neighbor Search
1. Create a method of comparing 1D ‘sizes’ of 3D objects

getLum(c1)

2. Build a luminance BST that stores 3D objects based on their 1D size
lum_tree_insert(root, key, value)

3. Implement a nearest neighbor search on the luminance BST
lum_tree_find(root, key)

Luminance Nearest Neighbor Search
Pros:

Cons:

The k-dimension tree (KD-tree)

Imagine we have a set of two dimensional points…

Images made by Jenny Chen (former CS 225 CA)

The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension:

The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension:

The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension:

The k-dimension tree (KD-tree)
We can build a k-dimension BST by comparing one dimension at a time

Images made by Jenny Chen (former CS 225 CA)

Depth: Split Dimension:

The k-dimension tree (KD-tree)
At every level, we essentially partition our tree in half:

KD-Tree Construction Example
Imagine I wanted to build a KD-tree with the following points in order:

(7, 2), (5, 4), (9, 6), (2, 3), (8, 1), (4, 7)

KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))

KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))

KD-tree Search

At each level we want to compare only the relevant search dimension

search((6, 3))

KD-tree Search

The leaf we find only tells us the maximum radius we need to search

search((6, 3))

KD-tree Search

As we go back up the tree, we decide if our point is closer to our query

search((6, 3))

KD-tree Search
Since our splitting point was within our search radius, we also have to
check if there’s a closer point in the other subtree

search((6, 3))

KD-tree Search

We repeat this process all the way up to the root…

search((6, 3))

KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))

KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))

KD-tree Search

… and in the other subtree if the root was in our radius

search((6, 3))

KD-tree Search

This strategy is worst case O(n) but on average O(log n).

search((6, 3))

KD-Tree Nearest Neighbor Search
Pros:

Cons:

KD-Tree in CS 277

from scipy.spatial import KDTree

l = [(255, 0, 0), (255, 255, 0), (0, 255, 0), (0,
255, 255), (0,0,255), (255,0,255)]

kdt = KDTree(l)

1
2
3
4
5
6

You do not need to know how to implement a KD-tree

You should know that it is the optimal solution to 100% accuracy NNS

You should understand conceptually how a KD-tree is built

Friday: A different tree application

Next Week: Addressing the ‘height’ problem

BST Worst Case

find O(h)

insert O(h)

delete O(h)

traverse O(n)

95

7

61

7

9

5

1

6

