Algorithms and Data Structures for Data Science Nearest Neighbor Search

CS 277 Brad Solomon March 29, 2023

Department of Computer Science

Learning Objectives

Review BST implementations

Discuss applications of BSTs

Introduce nearest neighbor search using images

An overview of the KD-Tree (You will not be implementing!)

An overview of the Huffman tree

BST Find

1	<pre>def find_helper(node,key):</pre>
2	if not node:
3	return None
4	
5	if node.key == key:
6	return node
7	
8	if node.key > key:
9	<pre>return find_helper(node.left, key)</pre>
10	
11	if node.key < key:
12	<pre>return find_helper(node.right, key)</pre>

find(4)

BST Find

1	<pre>def find_helper(node,key):</pre>
2	if not node:
3	return None
4	
5	if node.key == key:
6	return node
7	
8	if node.key > key:
9	<pre>find_helper(node.left, key)</pre>
10	
11	if node.key < key:
12	find helper(node.right, key)

find(4)

BST Insert

insert(5)

BST Insert

insert(5)

BST Insert

insert(5)

BST Remove

```
def remove helper(node, key):
 1
 2
       if node == None:
           return None
 3
 4
       if node.key > key:
 5
           node.left = remove helper(node.left, key)
 6
       if node.key < key:</pre>
 7
           node.right = remove helper(node.right, key)
 8
       if node.key == key:
 9
           if node.left == None and node.right == None:
10
               return None
11
           elif node.left == None:
12
               return node.right
13
           elif node.right == None:
14
                return node.left
15
16
           iop = findIOP(node)
17
           node.key = iop.key
18
           node.val = iop.val
19
           node.left = remove helper(node.left, iop.key)
20
21
       return node
22
23
```


remove(3)

When would we use a tree?

Pretend for a moment that we always have an optimal BST.

What is the running time of **find**?

What is the running time of **insert**?

What is the running time of **remove**?

Is there a data structure with a *better* running time for all of these?

Advantages of trees

The running time for a balanced tree is *always* **O(log n)**

The structure of a tree can have underlying meaning

Ex: Huffman Trees for Huffman encoding

Trees can be used to **find the nearest neighbor**

95


```
def fnn helper(node,key):
 1
 2
       if not node:
           return None
 3
 4
       if node.key == key:
 5
           return node
 6
 7
       if node.key > key:
 8
           temp = fnn helper(node.left, key)
 9
10
       if node.key < key:
11
           temp = fnn helper(node.right, key)
12
13
       # Nearest neighbor is either node.val (curr node)
14
       # OR the nearest neighbor found in the subtree
15
16
17
18
19
20
```


Given the collection above, what is the closest match to the color below?

Given the collection above, what is the closest match to the color below?

(90, 75, 50)

Euclidean Distance

The distance between two points is the length of a line between them

1D:
$$d(p,q) = \sqrt{(p-q)^2}$$

2D: $d(p,q) = \sqrt{(p_0 - q_0)^2 + (p_1 - q_1)^2}$
3D: $d(p,q) = \sqrt{(p_0 - q_0)^2 + (p_1 - q_1)^2 + (p_2 - q_2)^2}$

We can reduce the total number of calculations by **averaging colors**

		[[45	218	0],[223	147	243],[116	57	223],[187	9	9],[238	208	236]]
		[[216	190	15],[193	64	80],[184	35	215],[95	152	180],[128	36	41]]
		[[101	128	53],[224	122	191],[237	212	74],[35	98	227],[214	66	167]]
		[[188	3	211],[217	142	33],[210	229	167],[208	57	22],[3	213	235]]
		[[11	172	37],[225	191	57],[184	130	34],[136	33	51],[26	220	67]]

Naive Nearest Neighbor Search

1. Create a method of getting the Euclidean distance between points exactColorDist(c1, c2)

2. Create a method of getting the average color for a subset of the image getAverageColor(numArray, rstart=0, cstart=0, rlen=None, clen=None)

3. For each sub-image of a large image, get the closest matching tile getClosestColor(inlist, query)

Naive Nearest Neighbor Search

Pros:

Cons:

Rather than compare every sub-image to every tile, we want to build a BST!

... what is the smallest point in a 2D plane?

Rather than compare every sub-image to every tile, we want to build a BST!

... what is the smallest point in a 2D plane?

Problem: There's no obvious order in multi-dimensional space!

We can *reduce the dimensions* to create an arbitrary order, but lose precision

Because our input set is *colors*, there is at least one dimensional reduction

Because our input set is *colors*, there is at least one dimensional reduction Instead of a 3D RGB value, we can store a 1D *luminance* value:

L = = 0.299R + 0.587G + 0.114B

1. Create a method of comparing 1D 'sizes' of 3D objects getLum(c1)

2. Build a luminance BST that stores 3D objects based on their 1D size lum_tree_insert(root, key, value)

3. Implement a nearest neighbor search on the luminance BST lum_tree_find(root, key)

Luminance Nearest Neighbor Search

Pros:

Cons:

Imagine we have a set of two dimensional points...

We can build a k-dimension BST by comparing one dimension at a time

Depth: Split Dimension:

We can build a k-dimension BST by comparing one dimension at a time

Depth: Split Dimension:

We can build a k-dimension BST by comparing one dimension at a time

Depth: Split Dimension:

We can build a k-dimension BST by comparing one dimension at a time

Depth: Split Dimension:

At every level, we essentially partition our tree in half:

KD-Tree Construction Example

Imagine I wanted to build a KD-tree with the following points in order:

(7, 2), (5, 4), (9, 6), (2, 3), (8, 1), (4, 7)

search((6, 3))

At each level we want to compare *only* the relevant search dimension

search((6, 3))

At each level we want to compare *only* the relevant search dimension

search((6, 3))

At each level we want to compare *only* the relevant search dimension

search((6, 3))

The leaf we find only tells us the *maximum radius* we need to search

search((6, 3))

As we go back up the tree, we decide if our point is closer to our query

search((6, 3))

Since our splitting point was within our search radius, we also have to check if there's a closer point in the other subtree

search((6, 3))

We repeat this process all the way up to the root...

search((6, 3))

... and in the other subtree if the root was in our radius

search((6, 3))

... and in the other subtree if the root was in our radius

search((6, 3))

... and in the other subtree if the root was in our radius

This strategy is worst case O(n) but on average O(log n).

KD-Tree Nearest Neighbor Search

Pros:

Cons:

KD-Tree in CS 277

You do not need to know how to implement a KD-tree

```
1 from scipy.spatial import KDTree
2
3 l = [(255, 0, 0), (255, 255, 0), (0, 255, 0), (0,
4 255, 255), (0,0,255), (255,0,255)]
5
6 kdt = KDTree(l)
```

You should know that it is the optimal solution to 100% accuracy NNS

You should understand conceptually how a KD-tree is built

Friday: A different tree application

Next Week: Addressing the 'height' problem

