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Binary Search Trees



Learning Objectives

Review trees and binary trees

Discuss search on binary trees

Extend binary trees into binary search trees



Trees
A non-linear data structure defined recursively as a collection of nodes 
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes
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Binary Tree
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A binary tree is a tree  such that:T

or

T = treeNode(val, TL, TR)

class treeNode: 
    def __init__(self, val, left=None, right=None): 
        self.val = val 
        self.left = left 
        self.right = right
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Tree Traversals
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Pre-order: 

In-order: 

Post-order: 



Tree Abstract Data Type
What is a tree? What properties does it have? What functions?



Tree ADT

Insert: Add an object into tree

Remove: Remove a specific object from tree 

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree



Searching a Binary Tree
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There are two main approaches to searching a binary tree:



Depth First Search
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Explore as far along one path as possible before backtracking



Breadth First Search
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Fully explore depth i before exploring depth i+1



What search algorithm is best?
The average ‘branch factor’ for a game of 
chess is ~31. If you were searching a decision 
tree for chess, which search algorithm would 
you use?



Improved search on a binary tree
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Binary Search Tree (BST)
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∀n ∈ TL,  n . val < T . val

∀n ∈ TR,  n . val > T . val

A BST is a binary tree  such that:T = treeNode(val, TL, Tr)



BST In-Order Traversal
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Dictionary ADT

Data is often organized into key/value pairs:

Word  ➔ Definition

Course Number ➔ Lecture/Lab Schedule

Node ➔ Edges

Flight Number ➔ Arrival Information

URL ➔ HTML Page

Average Image Color ➔ File Location of Image



Binary Search Tree
class bstNode: 
    def __init__(self, key, val, left=None, right=None): 
        self.key = key 
        self.val = val 
        self.left = left 
        self.right = right 
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BST Insert
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Base Case:

Recursive Step:

Combining:



BST Insert
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BST Insert
def insert(root, key, value): 
    if root == None: 
        root = bstNode(key,value) 
    else: 
        insert_helper(root, key, value) 
    return root 

def insert_helper(node, key, value): 
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BST Insert
What binary would be formed by inserting the following sequence of 
integers: [3, 7, 2, 1, 4, 8, 0]



BST Find
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Base Case:

Recursive Step:

Combining:



BST Find
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BST Find
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BST Find
def find(root, key): 
    return find_helper(root, key).val 

def find_helper(node,key): 
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BST Remove
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BST Remove
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BST Remove
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BST Remove
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BST Remove
def remove(root, key): 
    root = remove_helper(root, key) 
    return root 

def remove_helper(node, key): 

def findIOP(node): 
    pass 

def findIOS(node): 
    pass 
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BST Remove

What will the tree structure look like if we remove node 16 using IOS?
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BST Analysis – Running Time

Operation
BST Worst Case

find

insert

delete

traverse


