
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

March 22, 2023

Binary Search Trees

Learning Objectives

Review trees and binary trees

Discuss search on binary trees

Extend binary trees into binary search trees

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

1

2

3

4
5

6

Binary Tree

X

AS

7

C

2

7

T = None

A binary tree is a tree such that:T

or

T = treeNode(val, TL, TR)

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5

Tree Traversals
112

4

1

5

6

8 103

7 9

Pre-order:

In-order:

Post-order:

Tree Abstract Data Type
What is a tree? What properties does it have? What functions?

Tree ADT

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree

Searching a Binary Tree

U

O M

C W

A

T

E S

IN

There are two main approaches to searching a binary tree:

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

What search algorithm is best?
The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?

Improved search on a binary tree

5 3 6 7 1 4

1

63

5

4 7

1 3 4 5 6 7

7

63

5

1 4

Binary Search Tree (BST)

13

10 25

12 37

38

51

40 84

8966

95

∀n ∈ TL, n . val < T . val

∀n ∈ TR, n . val > T . val

A BST is a binary tree such that:T = treeNode(val, TL, Tr)

BST In-Order Traversal

13

10 25

12 37

38

51

40 84

8966

95

Dictionary ADT

Data is often organized into key/value pairs:

Word ➔ Definition

Course Number ➔ Lecture/Lab Schedule

Node ➔ Edges

Flight Number ➔ Arrival Information

URL ➔ HTML Page

Average Image Color ➔ File Location of Image

Binary Search Tree
class bstNode:
 def __init__(self, key, val, left=None, right=None):
 self.key = key
 self.val = val
 self.left = left
 self.right = right

1
2

3
4
5

1

63

5

4 7

5 3 6 7 1 4
A B C D E F

Key

Value

BST Insert

1

63

5

4 7

Base Case:

Recursive Step:

Combining:

BST Insert

13

10 25

12 37

38

51

40 84

8966

95

insert(33)

BST Insert
def insert(root, key, value):
 if root == None:
 root = bstNode(key,value)
 else:
 insert_helper(root, key, value)
 return root

def insert_helper(node, key, value):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

63

5

4 7

BST Insert
What binary would be formed by inserting the following sequence of
integers: [3, 7, 2, 1, 4, 8, 0]

BST Find

1

63

5

4 7

Base Case:

Recursive Step:

Combining:

BST Find

13

10 25

12 37

38

51

40 84

8966

95

find(66)

BST Find

13

10 25

12 37

38

51

40 84

8966

95

find(9)

BST Find
def find(root, key):
 return find_helper(root, key).val

def find_helper(node,key):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

63

5

4 7

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(40)

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(25)

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(13)

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(51)

BST Remove
def remove(root, key):
 root = remove_helper(root, key)
 return root

def remove_helper(node, key):

def findIOP(node):
 pass

def findIOS(node):
 pass

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

63

5

4 7

BST Remove

What will the tree structure look like if we remove node 16 using IOS?

6

5

3

8

11

9 16

1814

21
121

BST Analysis – Running Time

Operation
BST Worst Case

find

insert

delete

traverse

