
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

March 20, 2023

Trees

Months

Te
rr

ito
ry

Rainfall (BYR; Low, Med, High)

Ti
m

e
of

 D
ay

Bike Sharing Features

Assignment Extensions
Everyone will have until Wednesday (3/22) to complete lab_search

Everyone will have until Friday (3/24) to complete mp_hash

Informal Early Feedback
I feel that I can actively participate…

in lecture: in class in general:

90.5% / 81% of class receive helpful and complete answers in / out of class

Informal Early Feedback
Helpful for learning material…

Lectures: Assignments:

Informal Early Feedback
Pacing of the course:

Informal Early Feedback
Labs and lectures are ‘most helpful’ to most students; MPs not listed at all

Extending deadline for labs (or opening labs earlier in week)

Requests / Suggestions (in no particular order):

Giving optional coding questions for practice exercises

Providing annotated lecture slides after each lecture

Include more live coding demonstrations in the class

Providing practice exams / example exam questions

A final project instead of a final

Learning Objectives

Formally define the tree data structure

Explore properties of trees and the specifics of binary trees

Implement and understand traversals and search on trees

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic

2) Rooted

1

2

3

4
5

6

Tree Terminology

HB

D

C

E

F

G IA

Node: The vertex of a tree

Edge: The [theoretical]
connecting path between nodes

Path: A list of the edges (or
nodes) traversed to go from node
start to node end

J

Tree Terminology
Parent: The precursor node to
the current node is the ‘parent’

Child: The nodes linked by the
current node are it’s ‘children’

Neighbor: Parent or child

Degree: The number of children
for a given node

HB

D

C

E

F

G IA

J

Tree Terminology
Root: The start of a tree (the only
node with no parent).

Leaf: The terminating nodes of a
tree (have no children)

Internal: A node with at least one
child

HB

D

C

E

F

G IA

J

There are many types of trees

Binary Tree

X

AS

7

C

2

7

T = None

A binary tree is a tree such that:T

or

T = treeNode(val, TL, TR)

Binary Tree

X

AS

7

C

2

7

class treeNode:
 def __init__(self, ______, ______, ______):

class binaryTree:
 def __init__(self, root=None):
 self.root = root

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Defining a tree
class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

tn1 = treeNode(1)

tn2 = treeNode(2)

tn3 = treeNode(3)

tn4 = treeNode(4)

tn5 = treeNode(5, tn1, tn2)

tn6 = treeNode(6, tn3, tn4)

tn7 = treeNode(7, tn5, tn6)

binaryTree(___________)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tree Terminology

b

d

g

h

j

c

e

i

f

a

Height: the length of the longest path from the root to a leaf

a

c

a

b

d

c

f

a

What is the height of a tree with zero nodes?

Tree Height

height(T) =

Base Case:

Recursive Step:

Combining:

Tree Traversals

65

8

7

2

9

3 41

A traversal of a tree T is an ordered way of visiting every node once.

Pre-Order Traversal

65

7

2 3 41

1) Get current node’s value

2) Recurse left

3) Recurse right

Post-Order Traversal
1) Recurse left

2) Recurse right

3) Get current nodes value
65

7

2 3 41

In-Order Traversal
1) Recurse left

2) Get current nodes value

3) Recurse right
65

7

2 3 41

Tree Traversals
112

4

1

5

6

8 103

7 9

Pre-order:

In-order:

Post-order:

Tree Traversals

Pre-order: Ideal for copying trees

Post-order: Ideal for deleting trees

X

AS

7

C

2

7

Searching a Binary Tree

U

O M

C W

A

T

E S

IN

There are two main approaches to searching a binary tree:

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

What search algorithm is best?
The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?

Improved search on a binary tree

5 3 6 7 1 4

1

63

5

4 7

1 3 4 5 6 7

7

63

5

1 4

Binary Search Tree (BST)

13

10 25

12 37

38

51

40 84

8966

95

∀n ∈ TL, n . val < T . val

∀n ∈ TR, n . val > T . val

A BST is a binary tree such that:T = treeNode(val, TL, Tr)

