
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277

Brad Solomon

March 8, 2023

Search

Lab_recursion Feedback

Average score: 87%

Only two students filled out survey

PL average time: 62 minutes

Both seemed to find it reasonably good!

Illinois Data
Science Club

JOIN OUR TEAM!

PROJECT LEAD MARKETING DIRECTOR

EXPERIENCE WITH ML, AI &
PYTHON
HELP LEAD A SEMESTER LONG
PROJECT HACKATHON
CAN COMMIT TO AT LEAST 5
HOURS A WEEK

EXPERIENCE WITH SOCIAL MEDIA
AND WEBSITE MANAGEMENT
ESTABLISH IDSC'S BRAND &
PRESENCE ON CAMPUS
INITIATE MARKETING AND SOCIAL
MEDIA STRATEGIES
CAN COMMIT TO AT LEAST 3
HOURS A WEEK

UIUCDSC UIUCDSC@GMAIL.COM

Learning Objectives

Introduce the fundamental search problem

Introduce and implement binary search

Review hash tables, sorting, and search

The Search Problem

Output:

Given a collection of objects, , with comparable values and an
object of interest, , find the first instance of .

C
q q ∈ C

4 5 6 7 8 9 10 11 12 13Input:

Index of if it exists, otherwiseq −1

Naive Linear Search
def naive_linear(inList, val):

 for i, obj in enumerate(inList):

 if val == obj:

 return i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

6 1 0 3 7 9 2 4

Naive Sorted Search

0 1 2 4 5 6 7 8 9 10

Find(3)

Naive Sorted Search
def naive_sorted(inList, val):

 for i, obj in enumerate(inList):

 if val == obj:

 return i

 elif val > obj:

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0 1 2 3 4 6 7 9

Binary Search Find(7)

0 1 2 3 4 5 6 7 8 9

Binary Search

A binary search (for object) partitions the search space into three regionsq

Uncertain > q< q

If we are looking for , where might we find it?q

How can we track this information?

Binary Search Find(8)

1 3 5 6 7 8 9

1 3 5 6 7 8 9

1. Find midpoint

2. Compare midpoint

3. Update range

Binary Search Find(18)

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1. Find midpoint

2. Compare midpoint

3. Update range

Binary Search Find(4)

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1 3 5 6 7 10 12 14 18

1. Find midpoint

2. Compare midpoint

3. Update range

Recursive Binary Search

0 3 7 5 8 9 2 1 4 6

Base Case:

Recursive Step:

Combining:

Binary Search
def binary_search(inList, q):

def recursive_BS(inList, q, start, end):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

0 1 2 3 4 6 7 9

Binary Search Efficiency

0 1 2 6 7 8 9 10 11

0 1 2 6

2 6

6

Hash Tables vs Binary Search
The hash table is generally superior for storing unordered objects

What are some situations where you can’t use a hash table?

0 1 2 2 2 2 2 3 4 5

Range Search

Input:

Output:

Given a collection of objects, , with comparable values and an
object of interest, , find the first instance(s) of .

C
q q ∈ C

ALL

Range of indices matching if it exists, otherwiseq (−1, − 1)

Binary Range Search

0 2 2 2 3 3 3

Find(3)

1. Perform binary search

2. ‘Extend’ in both directions

Observation: All matching values are going to be consecutive

Binary Range Search

3 3 3 3 3 3 3

Find(3)

1. Perform binary search

2. ‘Extend’ in both directions

Observation: All matching values are going to be consecutive

Binary Range Search

2 3 3 3 3 4 4

Find(3)

Observation: My search is looking for two specific values

1. Modify binary search to find the
first or last matching value

Binary Search: Get largest match

2 3 3 3 3 4 4 # THIS IS PSEUDOCODE

 if mid == q:

 # Match case: 
 # Treat like query is smaller

 # Remember last match!

 elif mid > q:

 # query is smaller case

 else:

 # query is larger case

 # Final Return Snippet

 if saw_match:

 return last_match

 else:

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Find(3)

Binary Search: Get largest match

2 2 2 2 2 2 4 # THIS IS PSEUDOCODE

 if mid == q:

 # Match case: 
 # Treat like query is smaller

 # Remember last match!

 elif mid > q:

 # query is smaller case

 else:

 # query is larger case

 # Final Return Snippet

 if saw_match:

 return last_match

 else:

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Find(2)

Binary Search: Get smallest match

2 3 3 3 3 4 4 # THIS IS PSEUDOCODE

 if mid == q:

 # Match case: 
 # Treat like query is larger

 # Remember last match!

 elif mid > q:

 # query is smaller case

 else:

 # query is larger case

 # Final Return Snippet

 if saw_match:

 return last_match

 else:

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Find(3)

Binary Search: Get smallest match

2 2 2 2 2 2 4 # THIS IS PSEUDOCODE

 if mid == q:

 # Match case: 
 # Treat like query is larger

 # Remember last match!

 elif mid > q:

 # query is smaller case

 else:

 # query is larger case

 # Final Return Snippet

 if saw_match:

 return last_match

 else:

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Find(2)

Exam 2: Review Material

Hashing (and Hash Tables)

Sorting Algorithms

Binary Search

Stacks and Queues

Stack and Queue
Understand LIFO / FIFO

Know the allowable operations for a stack and queue and how to use them

Understand Big O efficiency

Hashing
What are the necessary properties of a hash function?

What are the necessary components of a hash table?

Describe some strategies for addressing hash collisions

Hashing
What is the worst case performance (Big O) of a general-use hash table?

What assumption did we use to examine the expected performance?

Under that assumption, how does our load factor affect performance?

Sorting Algorithms
Understand the logic behind each one

Know the Big O of each method

Understand best case or worst case (when applicable)

Sorting Algorithm Tradeoffs

Best Case Time Worst Case time Best Case Space Worst Case Space

SelectionSort
O(n2) O(n2) O(1) O(1)

InsertionSort
O(n) O(n2) O(1) O(1)

MergeSort
O(n log n) O(n log n) O(n) O(n)

QuickSort
O(n log n) O(n2) O(log n) O(n)

What sorting algorithm would you use…?

0 1 2 3 4 5 6 7 8 9

What sorting algorithm would you use…?

9 8 7 6 5 4 3 2 1 0

Search Algorithms
Understand how to code and walk through binary search

Know the Big O of binary search

