
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

September 27, 2021

Sorting

Lab_hash Feedback

Average score: 82%

Material of neutral helpfulness to a sizable minority of students

Lab taught learning objectives and universally improved coding confidence

PL average time: 163 minutes

There was a problem with double_hash but it was resolved immediately

Learning Objectives

Motivate the need for sorting

Explore iterative solutions to sorting

Introduce recursion

The Sorting Problem

Input:

Output:

8 4 3 1 2 5 6 9 0 7

0 1 2 3 4 5 6 7 8 9

Given a collection of objects, , with comparable values, order the
objects such that

C
∀x ∈ C, xi ≤ xi+1

Sorting leads to efficient searching

0 1 2 3 4 5 6 7 8 9

8 4 3 1 2 5 6 9 0 7

Search(7)

Sorting leads to better visualization

Sorting is a fundamental problem in CS

Many algorithms begin with or include a sorting step

Fundamental sorting algorithms are great for mastering concepts

Sorting algorithms are a classic introduction to algorithms

Optimizing sort is an ongoing challenge

GraySort: Sort rate (TBs / minute) achieved while sorting a very large
amount of data (currently 100 TB minimum).

CloudSort: Minimum cost (Dollars) for sorting a very large amount of
data on a public cloud. (currently 100 TB).

MinuteSort: Amount of data that can be sorted in 60 seconds or less.

TeraByeSort: Elapsed time to sort 1 TB of data

Competition details: http://sortbenchmark.org/

http://sortbenchmark.org/

SelectionSort
def selectionSort(inList):
 n = len(inList)

 for i in range(n):
 mindex = i
 for j in range(i+1, n):
 if inList[j] < inList[mindex]:
 mindex = j

 inList[i], inList[mindex] = inList[mindex], inList[i]

1
2
3
4
5
6
7
8
9

10

InsertionSort

4 3 6 7 1 1. Divide array into two parts

2. Insert the first unsorted
item into the sorted position

3. Repeat until all items are sorted

InsertionSort “Insert”

1 2 4 5 7 3 8

1 2 4 5 3 7 8

1 2 4 3 5 7 8

1 2 3 4 5 7 8

InsertionSort
def insertionSort(inList):
 n = len(inList)

 for i in range(1, n):

 val = inList[i]

 j = i - 1
 while j >= 0 and val < inList[j]:
 inList[j+1]=inList[j]
 j -= 1

 inList[j+1]=val

1
2
3
4
5
6
7
8
9

10
11
12
13

8 6 3 1 0

1 2 3 4 5

Selection vs InsertionSort

1 2 3 4 5 1 2 3 4 5

Selection vs InsertionSort

5 4 3 2 1 5 4 3 2 1

Selection vs InsertionSort
def selectionSort(inList):
 n = len(inList)

 for i in range(n):
 mindex = i
 for j in range(i+1, n):
 if inList[j] < inList[mindex]:
 mindex = j

 inList[i], inList[mindex] =
inList[mindex], inList[i]

1
2
3
4
5
6
7
8
9

10
11
12

def insertionSort(inList):
 n = len(inList)

 for i in range(1, n):

 val = inList[i]

 j = i - 1
 while j >= 0 and val < inList[j]:
 inList[j+1]=inList[j]
 j -= 1

 inList[j+1]=val

1
2
3
4
5
6
7
8
9

10
11
12
13

Optimal Sorting

Claim: Any deterministic comparison-based sorting algorithm
must perform comparisons to sort objects.O(n log n) n

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

Divide and Conquer Algorithms
Recursively break a problem into sub-problems until the the problems
become simple enough to solve directly

4 3 6 7 1

4 3 6 7 1

4 3 6 7 1
4 3

Recursion
The process by which a function calls itself directly or indirectly is called
recursion.

Recursive For Loop

def recursiveFor(n):
 if n == 0:
 print(n)
 return

 recursiveFor(n-1)

 print(n)

1
2
3
4
5
6
7
8

for i in range(n+1):
 print(i)

1
2

def recursiveFor(n):
 if n == 0:
 print(0)
 return

 print(n)

 recursiveFor(n-1)

1
2
3
4
5
6
7
8

Recursive Sum

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

Given a list, sum all the items in the list using recursion

Recursive Sum
Given a list, sum all the items in the list using recursion

8 4 2 6 5

Recursive findMax

8 4 3 1 2 5 6 9 0 7

Base Case:

Recursive Step:

Combining:

Recursive Fibonacci

, Fib(n) = Fib(n − 1) + Fib(n − 2) n > 1

Base Case:

Recursive Step:

Combining:

Recursive List Partitioning

6 5 4 2 7

1 1 1 1 1

2 3 3 3 1

Using all elements in a list, can we make two lists which have equal sums?

Recursive List Partitioning
Using all elements in a list, can we make two lists which have equal sums?

Base Case:

Recursive List Partitioning

Recursive Step:

Using all elements in a list, can we make two lists which have equal sums?

Recursive List Partitioning
Using all elements in a list, can we make two lists which have equal sums?

(New) Base Case:

Recursive List Partitioning
Using all elements in a list, can we make two lists which have equal sums?

Combination Step:

Recursive List Partitioning
Using all elements in a list, can we make two lists which have equal sums?

4 3 1

Using all elements in a list, can we make two lists which have equal sums?

([], [])

([4], []) ([], [4])

([3, 4], []) ([4], [3])

Input

[4, 3, 1]

[3, 1]

[1]

[]

([3], [4]) ([], [3, 4])

([1, 3, 4], [])

([3, 4], [1])

([1, 4], [3])

([4], [1, 3])

([1, 3], [4])

([3], [1, 4])

([1], [3, 4])

([], [1, 3, 4])

Recursive Array Sorting

0 3 7 5 8 9 2 1 4 6

Base Case:

Recursive Step:

Combining:

