Algorithms and Data Structures for Data Science Set Cardinality and Minhash CS 277

Brad Solomon

February 27, 2023

Department of Computer Science

Learning Objectives

Introduce the concept of cardinality and cardinality estimation

Demonstrate the relationship between cardinality and similarity

Introduce the MinHash Sketch for set similarity detection

Bloom Filters

A probabilistic data structure storing a set of values

Has three key properties:

k, number of hash functions n, expected number of insertions m, filter size in bits

Expected false positive rate:

$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

Optimal accuracy when:

$$k^* = \ln 2 \cdot \frac{m}{n}$$

$$h_{\{1,2,3,...,k\}}$$

The hidden problem with sketches...

Cardinality

Cardinality is a measure of how many unique items are in a set

2
4
9
3
7
9
7
8
5
6

Cardinality

Sometimes its not possible or realistic to count all objects!

Estimate: 60 billion — 130 trillion

Image: https://doi.org/10.1038/nature03597

	_
5581	
8945	
6145	
8126	
3887	
8925	
1246	
8324	
4549	
9100	
5598	
8499	
8970	
3921	
8575	
4859	
4960	
42	
6901	
4336	
9228	
3317	
399	
6925	
2660	-
2314	

Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?

Imagine we have multiple sets (multiple minimums).

Let min = 95. Can we estimate *N*, the cardinality of the set?

Why do we care about "the hat problem"?

Why do we care about "the hat problem"?

m possible minima Key Value Universe of card sets

Now imagine we have a SUHA hash *h* over a range *m*.

Here a hash insert is equivalent to adding a card to our hat!

Now storing only the minimum hash value is a **sketch!**

Let $M = min(X_1, X_2, ..., X_N)$ where each $X_i \in [0, 1]$ is an independent random variable

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

0

Claim:
$$E[M] = \frac{1}{N+1}$$
 $N \approx \frac{1}{M} - 1$

Attempt 20.2530.8390.3270.6550.491

Attempt 3

0.134	0.580	0.364	0.743	0.931

0

The minimum hash is a valid sketch of a dataset but can we do better?

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[\mathbf{M}_k] = \frac{k}{N+1}$$

$$0 \quad \underbrace{M_1}_{1} \quad \underbrace{M_2}_{1} \quad \underbrace{M_3}_{1} \quad \ldots \quad \underbrace{M_k}_{1}$$

 M_1

Claim: Taking the k^{th} -smallest hash value is a better sketch!

 M_2

Claim:
$$\mathbf{E}[\mathbf{M}_k] = \frac{k}{N+1}$$

= $\left[\mathbf{E}[\mathbf{M}_1] + (\mathbf{E}[\mathbf{M}_2] - \mathbf{E}[\mathbf{M}_1]) + \dots + (\mathbf{E}[\mathbf{M}_k] - \mathbf{E}[\mathbf{M}_{k-1}])\right] \cdot \frac{1}{k}$

 M_3 ...

 M_{k-1}

 M_k

Cardinality

Cardinality

Given any dataset and a SUHA hash function, we can estimate the number of unique items by tracking the minimum hash values.

Applied Cardinalities

Cardinalities

|A|

 $|A \cup B|$

 $|A \cap B|$

Set similarities

$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

 $J = \frac{|A \cap B|}{|A \cup B|}$

Real-world Meaning Aggccacagtgtattatgactg

GAGG--TCAGATTCACAGCCAC

Set Similarity

To measure **similarity** of *A* & *B*, we need both a measure of how similar the sets are but also the total size of both sets.

$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the Jaccard coefficient

Similarity Sketches

But what do we do when we only have a sketch?

Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Let sets A and B be two arbitrary sets of at least 8 elements

The eight minimum hash values for sets A and B is a MinHash Sketch

To get similarity, we want to estimate $|A \cup B|$ and $|A \cap B| \dots$

To get similarity, we want to estimate $|A \cup B|$ and $|A \cap B| \dots$

To get similarity, we want to estimate $|A \cup B|$ and $|A \cap B| \dots$

Inclusion-Exclusion Principle

$|A \cap B| =$

Set Similarity

Using inclusion-exclusion principle and KMV, we can estimate similarity!

*k*th minimum value (KMV) with k = 8, assuming hash range is integers in [0, 100):

$$= \frac{800/23 - 1 + 800/23 - 1 - 800/15 - 1}{800/15 - 1}$$
$$= \frac{34.782 + 34.782 - 53.333 - 1}{53.333 - 1}$$
$$\approx 0.29$$

 $|A| + |B| - |A \cup B|$ $|A \cup B|$

Claim: Cardinality of the intersection can also be estimated directly!

1) Sequence decomposed into **kmers**

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

MinHash in practice

Mash: fast genome and metagenome distance estimation using MinHash Ondov et al (2016) *Genome Biology* Reviewing probabilistic data sketches

Does a *specific* object exist in my data?

How many unique objects do I have in my set?

How similar are two datasets?

Bonus Slides (Taking it one step further...)

Bottom-k minhash has low accuracy if the cardinality of sets are skewed

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, Christopher B. Buck, and Adam M. Phillippy. **Mash Screen: High-throughput sequence containment estimation for genome discovery**. *Genome biology* 20.1 (2019): 1-13.

K-Hash Minhash

What if instead we used k different hashes and took the min each time?

K-Partition Minhash

What if we instead took the minimum of k-partitions?

HyperLogLog

Baker, Daniel et al. "Dashing: fast and accurate genomic distances with HyperLogLog." Genome biology 20.1 (2019): 1-12.

Where do we go from here?

Hashing (and hash adjacent data structures) seem optimal!

Is there something they can't do that we might want?

The Sorting Problem

Given a collection of objects, C, with comparable values, order the objects such that $\forall x \in C, x_i \leq x_{i+1}$

SelectionSort

1. Find the *i*-th smallest value

- 2. Place it at position *i* via swap
- 3. Repeat for $0 \le i \le n-1$

SelectionSort Efficiency

