Algorithms and Data Structures for Data Science Bloom Filters

CS 277 Brad Solomon February 22, 2023

Department of Computer Science

Lab_quacks Feedback

Average score: 75%, 85%

PL average time: 90 minutes

You must be familiar with stacks and queues for the next exam.

Learning Objectives

Build a conceptual understanding of a bloom filter

Review probabilistic data structures and one-sided error

Formalize the math behind the bloom filter

Introduce extensions to the bloom filter

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects *in a memory-constrained environment*?

Constrained by Big Data (Large N)

	Sky Survey Projects	Data Volume
	DPOSS (The Palomar Digital Sky Survey)	3 TB
	2MASS (The Two Micron All-Sky Survey)	10 TB
	GBT (Green Bank Telescope)	20 PB
	GALEX (The Galaxy Evolution Explorer)	30 TB
	SDSS (The Sloan Digital Sky Survey)	40 TB
	SkyMapper Southern Sky Survey	500 TB
	PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected
	LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected
	SKA (The Square Kilometer Array)	~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects *in a memory-constrained environment*?

Constrained by resource limitations

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Reducing storage costs

1) Throw out information that isn't needed

2) Compress the dataset

What can we remove from a hash table?

What can we remove from a hash table?

Take away values

What can we remove from a hash table?

Take away values and keys

What can we remove from a hash table?

Take away values and keys

This is a **bloom filter**


```
Bloom Filter: Insertion
S = { 16, 8, 4, 13, 29, 11, 22 }
h(k) = k % 7
```


Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

Bloom Filter: Deletion

Due to hash collisions and lack of information, items cannot be deleted!

find(20)

Bloom Filter: Search

The bloom filter is a *probabilistic* data structure!

If the value in the BF is 0:

If the value in the BF is 1:

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

Imagine we have a **bloom filter** that **stores malicious sites...**

Probabilistic Accuracy: One-sided error

Probabilistic Accuracy: One-sided error

 $h_{\{1,2,3,...,k\}}(y)$

Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that **all** filters return the value '1' for an item we didn't insert?

But doesn't this hurt our storage costs by storing k separate filters?

Rather than use a new filter for each hash, one filter can use k hashes

 $S = \{6, 8, 4\}$ $h_1(x) = x \% 10$ $h_2(x) = 2x \% 10$ $h_3(x) = (5+3x) \% 10$

Rather than use a new filter for each hash, one filter can use k hashes

0	0	$h_1(x) = x \% 10$	h ₂ (x) = 2x % 10	h₃(x) = (5+3x) % 10
1	0			
2	1	_find(1)		
3	1			
4	1			
5	0			
6	1	find(16)		
7	1			
8	1			
9	1			

Bloom Filter

A probabilistic data structure storing a set of values

Built from a bit vector of length *m* and *k* hash functions

Insert / Find runs in: ____

Delete is not possible (yet)!

 $H = \{h_1, h_2, \ldots, h_k\}$ U 0 0 0 0 0 \cap

Given bit vector of size *m* and *k* SUHA hash function

What is our expected FPR after *n* objects are inserted?

 \mathcal{M}

Given bit vector of size *m* and 1 SUHA hash function

 $h_{\{1,2,3,\ldots,k\}}$

m

What's the probability a specific bucket is 1 after one object is inserted?

Same probability given k SUHA hash function?

Given bit vector of size *m* and *k* SUHA hash function

Probability a specific bucket is 0 after one object is inserted?

After *n* objects are inserted?

Given bit vector of size *m* and *k* SUHA hash function

What's the probability a specific bucket is 1 after *n* objects are inserted?

 \mathcal{M}

Given bit vector of size *m* and *k* SUHA hash function

What is our expected FPR after *n* objects are inserted?

The probability my bit is 1 after *n* objects inserted

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

The number of [assumed independent] trials

Vector of size *m*, *k* SUHA hash function, and *n* objects

To minimize the FPR, do we prefer...

(A) large k (B) small k

$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k$$

 \mathcal{M}

Bloom Filter: Optimal Error Rate

Claim: The optimal hash function is when $k^* = ln \ 2 \cdot \frac{m}{n}$

Bloom Filter: Optimal Error Rate

Claim: The optimal hash function is when $k^* = ln \ 2 \cdot \frac{m}{n}$

$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$\frac{d}{dk}\left(1-e^{\frac{-nk}{m}}\right)^k \approx \frac{d}{dk}\left(k \ln(1-e^{\frac{-nk}{m}})\right)$$

Derivative is zero when $k^* = \ln 2 \cdot \frac{m}{k}$

Figure by Ben Langmead

Bloom Filter: Optimal Parameters

$|k^* = \ln 2 \cdot \frac{m}{m}|$ Given any two values, we can optimize the third

$$n = 100$$
 items $k = 3$ hashes $m =$

$$m = 100$$
 bits $n = 20$ items $k =$

$$m = 100$$
 bits $k = 2$ items $n =$

Bloom Filter: Optimal Parameters

$$m = \frac{nk}{\ln 2} \approx 1.44 \cdot nk$$

Optimal hash function is still O(n)!

n = 250,000 files vs 260 TB

n = 60 billion — 130 trillion

About 4,850,000,000 results (0.49 seconds)

Images for cat

Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

Imagine we have a large collection of text...

And our goal is to search these files for a query of interest...

Bloom Filters: Unioning

Bloom filters can be trivially merged using bit-wise union.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." *Nature biotechnology* 34.3 (2016): 300-302.

FASTA

sitive

,0 ', 1 od ', 1

2692°GB

016

gz

6.3 GB

GB

SRA

4966.**G**B

06

ŝiti∨€

Ö

Leaves

Full Tree

Solomon, Brad, and Carl Kingsford. Jupproved search of large transcriptomic sequencing databases (9i2) split/sequence b@02n trees. Intern@ti2nal (Conference on Research in Confectuational Molecular folology. Springer, finam, $\theta = 1.0$ $\theta = 1.0$

Sun, Chen, et al. "Allsome sequence bloom trees." *International Conference* on Research in Computational Molecular Biology. Springer, Cham, 2017. False positive Fa

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence bloom trees." *Bioinformatics* 36.3 (2020): 721-727.

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." *Proceedings of the 2003 ACM SIGMOD international conference on Management of data*. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies*. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." *IEEE/ACM transactions on networking* 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. 2004.

There are many more than shown here...