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Lab_quacks Feedback

Average score: 75%,   85%

Genuinely didn’t think it would be a hard assignment.

You must be familiar with stacks and queues for the next exam.

PL average time: 90 minutes



Learning Objectives

Review probabilistic data structures and one-sided error

Formalize the math behind the bloom filter

Introduce extensions to the bloom filter

Build a conceptual understanding of a bloom filter



Memory-Constrained Data Structures

What method would you use to build a search index on a 
collection of objects in a memory-constrained environment?

Constrained by Big Data (Large )N

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597


Memory-Constrained Data Structures

What method would you use to build a search index on a 
collection of objects in a memory-constrained environment?

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

https://gist.github.com/hellerbarde/2843375


Reducing storage costs

1) Throw out information that isn’t needed

2) Compress the dataset



Reducing a hash table
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What can we remove from a 
hash table?
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H(k1) = i1
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H(k1) = i1

Reducing a hash table

What can we remove from a 
hash table?
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Reducing a hash table

What can we remove from a 
hash table?

Take away values and keys

H(k1) = i1
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This is a bloom filter

m

Reducing a hash table

What can we remove from a 
hash table?

Take away values and keys

H(k1) = i1



Bloom Filter: Insertion

0 0
1 0
2 0
3 0
4 0
5 0
6 0

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7



Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing 
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1
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H(x1)

H(x2)

H(x3)
H(x4)



Bloom Filter: Deletion

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7

_delete(13)

_delete(29)



Bloom Filter: Deletion

Due to hash collisions and lack of information, 
items cannot be deleted! 0
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Bloom Filter: Search

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7

_find(16)

_find(20)

_find(3)



Bloom Filter: Search

The bloom filter is a probabilistic data structure!
H(α)

If the value in the BF is 0: 

If the value in the BF is 1: 
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H(β)

H(δ)



Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

“Not malicious”

“Malicious”



Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive: 

False Positive: 

False Negative: 

True Negative: 



Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
H(z)

0
0
0
0
1

‘No’

True Positive

0
1
0
0
1

‘Yes’

False Positive

H(z) 0
0
0
0
1

‘No’

False Negative

True Negative

Imagine we have a bloom filter that stores malicious sites…



Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: ≠
We will get some False Positives: =

search with one-
sided error

Query:

Dataset:



search with one-
sided error

Query:

Dataset:

Query:

search with one-
sided error

…

Probabilistic Accuracy: One-sided error
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Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials
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Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials
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If any query yields 0, 
item is not in the set

Bloom Filter: Repeated Trials
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If all queries yield 1, item 
may be in the set; or we 
might have collided k times

Bloom Filter: Repeated Trials



Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have  bloom filter, each with a FPR , what is the likelihood that all 
filters return the value ‘1’ for an item we didn’t insert?

k p
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But doesn’t this hurt our storage costs by storing   separate filters?k

Bloom Filter: Repeated Trials



Bloom Filter: Repeated Trials

0
1
2
3
4
5
6
7
8
9

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 } 

Rather than use a new filter for each hash, one filter can use  hashesk



Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use  hashesk



Bloom Filter

0
0
1
0
0
1
0
1
0
0

A probabilistic data structure storing a set of values

Built from a bit vector of length  and  hash functionsm k

Insert / Find runs in: _______________

Delete is not possible (yet)!

H = {h1, h2, . . . , hk}



Bloom Filter: Error Rate
Given bit vector of size  and  SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after  objects are inserted?n



Bloom Filter: Error Rate
Given bit vector of size  and 1 SUHA hash functionm

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after 
one object is inserted?

Same probability given  SUHA hash function?k



Bloom Filter: Error Rate
Given bit vector of size  and  SUHA hash functionm k

h{1,2,3,...,k}

m

Probability a specific bucket is 0 after one object is inserted?

After   objects are inserted?n



Bloom Filter: Error Rate
Given bit vector of size  and  SUHA hash functionm k

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after      
 objects are inserted?n



Bloom Filter: Error Rate
Given bit vector of size  and  SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after  objects are inserted?n

The probability my bit is 1 after  objects insertedn

(1 − (1 −
1
m )

nk

)
k

The number of [assumed independent] trials



Bloom Filter: Error Rate
Vector of size ,  SUHA hash function, and  objectsm k n

h{1,2,3,...,k}

m

To minimize the FPR, do we prefer…

(1 − (1 −
1
m )

nk

)
k

 (A) large  k (B) small k



Bloom Filter: Optimal Error Rate
Claim: The optimal hash function is when k * = ln 2 ⋅

m
n



Bloom Filter: Optimal Error Rate
Claim: The optimal hash function is when k * = ln 2 ⋅

m
n

(1 − (1 −
1
m )

nk

)
k

≈ (1 − e
−nk
m )

k

d
dk (1 − e

−nk
m )

k
≈

d
dk (k ln(1 − e

−nk
m ))

Derivative is zero when k* = ln 2 ⋅
m
n



h

Tradeoff for M/N=10

FPR

k

m /n = 10

(1 − e
−nk
m )

k

k* = ln 2 ⋅ 10 = 6.93

Bloom Filter: Error Rate

Figure by Ben Langmead



Bloom Filter: Optimal Parameters

 itemsn = 100  hashesk = 3 m =

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

 bitsm = 100  itemsn = 20 k =

 bitsm = 100  itemsk = 2 n =



Bloom Filter: Optimal Parameters

m =
nk
ln 2

≈ 1.44 ⋅ nk Optimal hash function is still O(n)!

n = 60 billion — 130 trillion

n = 250,000 files vs 260 TB



Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

0
1
0
1
0
1

Loaded this before?

Cache this page!

Add to filter (but don’t cache!)



Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG 
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC 
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG 
TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files 
for a query of interest…



Bloom Filters: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bloom filters can be trivially merged using bit-wise union.

0
1
2
3
4
5
6
7
8
9

U =



Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees



Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query 
kmers ∈ this Bloom filter? 

If YES, move to children

If NO, stop looking 
at this subtree 

(Global mismatch)

X X X X XXX



Sequence Bloom Trees
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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