
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 20, 2023

Hashing 2

Learning Objectives

Review what a hash table is and what its key weakness is

Introduce closed hashing strategies

A Hash Table based Dictionary
d = {}
d[k] = v
print(d[k])

1
2
3

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Be>y B 2
Bre> A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Open Hashing: Separate Chaining

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

Bre>
A-

Be>y
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: keys are equally likely to hash to any position

Independent: key hash values are independent of other keys

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

find runs in: __________.

insert runs in: __________.

remove runs in: __________.

0
1
2
3
4
5
6
7
8
9

10

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

Collision Handling: Probe-based Hashing
(Example of closed hashing)

0
1
2
3
4
5
6

h(k) = k % 7
S = { 1, 8 , 15} |S| = n

|Array| = m

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (k + i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1) % 7, if full…
Try h(k) = (k + 2) % 7, if full…
Try …

0
1
2
3
4
5
6

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_find(29)

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_remove(16)

A Problem w/ Linear Probing
Primary clustering:

 Description:

 Remedy:

0
1 1
2 1’
3 3
4 1’’
5 3’
6
7
8
9

Collision Handling: Quadratic Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 12, 22 }

h(k, i) = (k + i*i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1*1) % 7, if full…
Try h(k) = (k + 2*2) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

Collision Handling: Quadratic Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 12, 22 }

0 12
1 8
2 16
3 22
4 4
5 29
6 13

_find(11)

_remove(16)

A Problem w/ Quadratic Probing
Secondary clustering:

 Description:

 Remedy:

0 0
1 0’
2
3
4 0’’
5
6
7
8
9 0’’’

Collision Handling: Double Hashing
(Example of closed hashing)

|S| = n
|Array| = mh1(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (h1(k) + i*h2(k)) % 7
Try h(k) = (k + 0*h2(k)) % 7, if full…
Try h(k) = (k + 1*h2(k)) % 7, if full…
Try h(k) = (k + 2*h2(k)) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

h2(k) = 5 - (k % 5)

Running Times
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

Separate Chaining:

• Successful: 1 + α/2

• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA
(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:

- If α is constant:

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

Resizing a hash table
How do we resize?

Running Times
Hash Table Array List Linked List

Find

Amortized:

Worst Case:

Insert (Order
Agnostic)

Amortized:

Worst Case:

Amortized:

Worst Case:

Remove (By
Value)

Amortized:

Worst Case:

Storage Space

On Wednesday: More uses for hash functions!

Choosing a Hash Function
Python has a built-in hash! It’s pretty good if you run everything at once.

print(hash("I can pass in any string!”))

print(hash(205811))

1
2
3
4
5
6

Choosing a Hash Function
If you want something that is persistently deterministic, find a seeded hash

import mmh3

print(mmh3.hash("I can pass in any string!", 10)) #I got: -565691678
print(mmh3.hash("I can pass in any string!", 50)) #I got: -947521776
print(mmh3.hash("I can pass in any string!", 12)) #I got: 1680496801

1
2
3
4
5
6

Bonus Slides

Hash Function (Division Method)
Hash of form: h(k) = k % m

Pro:

Con:

Hash Function (Multiplication Method)
Hash of form: , h(k) = ⌊m(kA % 1)⌋ 0 ≤ A ≤ 1

Pro:

Con:

Hash Function (Universal Hash Family)
Hash of form: , hab(k) = ((ak + b) % p) % m a, b ∈ Z*p , Zp

, ∀k1 ≠ k2 Pra,b(hab[k1] = hab[k2]) ≤
1
m

Pro:

Con:

