Algorithms and Data Structures for Data Science lab_recursion

CS 277
March 3, 2023
Brad Solomon

Learning Objectives

Review fundamentals of recursion

Implement recursive functions to handle a variety of tasks

Recursion

About 11,300,000 results (0.66 seconds)
Did you mean: recursion

WHO WOULD WIN?

Highly complex recursive calls

Recursion

The success or failure of this lab (and the time it takes you) depends on your ability to answer the following:

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

Triangle

 $\square \square \square$Lets practice by discussing together!
Given the height of a triangle, how many total blocks were used to make it?

Base Case:

Recursive Step:

Combination Step:

Each exercise a fun new twist!

Sum of Digits:

Triangle:

Palindrome:

List Partitioning:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?

Base Case:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?

Recursive Step:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?
(New) Base Case:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?
Combination Step:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?

4	3	1

Recursive Helper Function

```
l}\begin{array}{rll}{1}&{\mathrm{ def can_partition(number_list):}}\\{2}&{\mathrm{ return False }}\\{3}&{}\\{4}&{}\\{5}&{}\\{6}&{}\\{7}&{}\\{8}&{}\\{9}&{\mathrm{ def partition_helper(number_list, leftList, rightList):}}\\{10}&{\mathrm{ pass }}\\{11}&{}\\{12}&{}\\{l}
```

Using all elements in a list, can we make two lists which have equal sums?
Input
$[4,3,1]$
([], [])
$[3,1]$
([4], [])
([], [4])
$[1]([3,4],[])([4],[3])([3],[4])([],[3,4])$
[]

$$
\begin{array}{llll}
([1,3,4],[]) & ([1,4],[3]) & ([1,3],[4]) & ([1],[3,4]) \\
([3,4],[1]) & ([4],[1,3]) & ([3],[1,4]) & ([],[1,3,4])
\end{array}
$$

