
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277

Brad Solomon

March 31, 2023

lab_huffman

Learning Objectives

Review fundamentals of binary trees

Experience using data structures for data compression

Practice more open-ended coding problems

Optimal Storage Costs
Achieving an optimal storage cost for a dataset is often important

Let's use strings as an accessible example!

What is the minimum bits needed to encode the message:

‘feed me more food’Char Binary
f 000
e 001
d 010
m 100
r 011
o 101

 ‘ ‘ 110

Optimal Storage Costs

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Using three bits per character, we have 51 bits total. But can we do better?

‘feed me more food’

If we think about our input as a sorted list of frequencies, yes!

Using binary trees for string encoding

B

A

C D

class bstNode:

 def __init__(self, key, val, left=None, right=None):

 self.key = key

 self.val = val

 self.left = left

 self.right = right

7 5 2 4
Key

Value

A B C D

Lets define a tree with the following:

The values are the frequencies of those characters

The keys are individual characters

Binary Tree encoding

B

A

C D

Given the following two trees, how might we define an encoding?

A B C D

Binary Tree encoding

B

A

C D

How did we produce this encoding?

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

B

A

C D

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Going left = 0

Going right = 1

Binary Tree encoding
The path from root to leaf defines our encoding, but which tree is best?

B

A

C D

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Binary Tree encoding
If my frequencies are {A : 7 | B : 5 | C : 2 | D : 4 }, which tree was better?

Building the Huffman Tree
The Huffman Tree is the tree with the optimal total path length for a
given set of characters and their frequencies.

Step 1: Calculate the frequency of every character in text and
order by increasing frequency. Store in a queue (a sorted list).

Input: ’feed me more food’

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input:

Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input:

Output:

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Output:

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Output:

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Output:

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items (while
considering both single characters and merged characters).

Input:

Output:

Single:

Merged: rde : 7 | fmo’SPACE’ : 10

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7

Building the Huffman Tree
Step 4: Stop when there is only a single item in either queue.

Input:

Output:

Single:

Merged: rdefmo’SPACE’ : 17

Single:

Merged: rde : 7 | fmo’SPACE’ : 10

Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary

f

e

d

m

r

o

 ‘ ‘

Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary

f 100

e 01

d 001

m 101

r 000

o 110

 ‘ ‘ 111

Decoding using the Huffman Tree
We can decode by walking through the tree using 0s and 1s as instructions!

Input: 100010100111110101

Output:

Assignment Tips
Your assignment is to implement just encoding. Decoding is for fun.

1. Create a method to find the smallest bstNode (by frequency)
getSmallest(single, merged)

2. Build a Huffman Tree based on an input string
buildHuffman(instring)

3. Given a Huffman Tree, build a dictionary of all the characters encodings
buildEncoder(node, code, outDict)

