Threads: appendix

Copyright ©: University of lllinois CS 241 Staff

Processes vs. Threads

6 Process 1 Process 1 Process 1 Process
S \ \ \ |

| -

-

8\

9 User <\

~ space

)

C

O

= ; Thread “axecution Threzd
e Kernel

'S space Kernel Kernel
-

LL

(a) (b)
hree processes each with one thread

One process with three threads

Copyright ©: University of lllinois CS 241 Staff

Processes vs. Threads

Per Process ltems

Per Thread Items

Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Program counter
Registers state
Stack

Each thread executes separately

Threads in the same process share many resources

No protection among threads!!

Copyright ©: University of lllinois CS 241 Staff

Thread Usage: Word
Processor

Keyboard

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation
conceived in liberty,
and dedicated to the
proposition that all
men are created equal

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war,

We have come to
dedicate a portion of
that field as a final
testing place for those
who here gave their

lives that this nation
might live. 1t is
altogether fitting and
proper that we should
do this.

But, ina largersemse,
we cannot dedicate, we
cannct consecrate we
cannot hallow this
gound. The bave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
10 add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
what th

Lt is for us the living,
mther, to be dedicated

here to the unfinished
wotk which they who
fought here have thus
far 50 nobly advanced
1t is mther for vs to be
here dedicated to the
great task remaining
before s, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measvre of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
'under God, shall have
a new birth of freedom
and that government of
the people by the
peaple, for the peaple

L

J

~

Kernel

Copyright ©: University of lllinois CS 241 Staff

D

IS

Kk

Thread Usage: Web Server

Web server process

Dispatcher thread
- »2? ‘ Worker thread User
2 2 2 space
Web page cache
-
Kernel
Kernel space
Network
connection

Copyright ©: University of lllinois CS 241 Staff]

summary: Creating Threads

Initially, main () has a single thread

o All other threads must be explicitly created
pthread create() =2 new executable thread
o Can be called any number of times from anywhere

Maximum number of threads is implementation
dependent

Question:

o After a thread has been created, how do you know when it
will be scheduled to run by the operating system?

o Answer: It is up to the operating system
Note: Good coding should not require knowledge of scheduling

Copyright ©: University of lllinois CS 241 Staff

Pthread_exit

void pthread_exit(void *value_ptr);
Common uses:

value_ptr is often a pointer to a malloc’ d struct
(memory must be free’ d by joining thread)

Pass a pointer to heap not to the stack!!!

Copyright ©: University of lllinois CS 241 Staff

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Thread Exit:
pthread_exit or return?

e When a thread is done, it can return from its first
function (the one used by pthread_create) or it
can call pthread_exit

e An implicit call to pthread_exit() is made when a thread other than
main() returns from the start routine that was used to create it. The
function’ s return value shall serve as the thread’ s exit status.

Copyright ©: University of lllinois CS 241 Staff

pthreads Attributes

Attributes

o Data structure pthread attr t
o Set of choices for a thread
o Passed in thread creation routine

Choices
o Scheduling options (more later on scheduling)

o Detached state
Detached
o Main thread does not wait for created threads to terminate
Joinable

o Main thread waits for created thread to terminate
o Useful if created thread returns a value

Copyright ©: University of lllinois CS 241 Staff

pthreads Attributes

= |nitialize an attributes structure to the default
values

O 1int pthread attr init (pthread attr t*
attr) ;

m Set the detached state value in an attributes
structure

O int pthread attr setdetachedstate
(pthread attr £* attr, int wvalue);

o Value

= PTHREAD CREATE DETACHED
= PTHREAD CREATE JOINABLE

Copyright ©: University of lllinois CS 241 Staff

Waiting for Threads:
pthread join()

int pthread join(pthread t thread, void** retval);
Note

o You cannot call pthread join() ona detached thread,
o Detaching means you are NOT interested in knowing about the thread’ s
exit
Set pthread attr to joinable before calling pthread create ()
=>» This is the default option!

pthread attr init(&attr);
pthread attr setdetachstate(&attr,
PTHREAD CREATE J OINABLE) ;

Copyright ©: University of lllinois CS 241 Staff

Example: pthread create ()

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
void *snow(void *data) {
printf (”"Main thread said:%s\n", (char *) data);
pthread exit (NULL) ;
}
int main(int argc, char *argv[]) {
pthread t mythread;
int result;
char *data = "Let it snow.";
result = pthread create(&mythread, NULL, snow, (void *) data);
printf ("pthread create() returned %$d\n", result);
if (result)
exit(1l);
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Example 1: process vs. thread

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int x = 1;

void *func(void *p) {
x =x + 10;
printf("child's x is %d\n", x);
return NULL;

int main(int argc, char** argv) {
if (fork() == 0)
func (NULL) ;
else {
wait (NULL) ;
printf ("parent's x is %d\n", x);

Copyright ©: University of lllinois CS 241 Staff

Example 2: process vs. thread

#include <stdio.h>
#include <pthread.h>

int x = 1;

void *func(void *p) {
x =x + 10;
printf ("func thread's x is %d\n", x);
pthread exit (NULL) ;

int main(int argc, char** argv) {
pthread t tid;
pthread create(&tid, NULL, func, NULL);

pthread join(tid, NULL);

printf ("main thread's x is %d\n", x);

Copyright ©: University of lllinois CS 241 Staff

Returning data through
pthread join()

void *thread(void *vargp) {

int *value = (int *)malloc(sizeof (int)) ;
*value = 84;

pthread exit(value);

int main() {

int i; pthread t tid; void *vptr return;

pthread create(&tid, NULL, thread, NULL);
pthread join(tid, &vptr return) ;

i = *((int *)vptr return);
free (vptr_ return);

printf ("$d\n",1i) ;

Copyright ©: University of lllinois CS 241 Staff

Thread Argument Passing

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 8

char *messages[NUM THREADS];

void *PrintHello (void *threadid) {

int *id ptr, taskid;

sleep(1) ;
id ptr = (int *) threadid;
taskid = *id ptr;

printf ("Thread %d: %s\n", taskid, messages[taskid]);

pthread exit (NULL) ;

} Copyright ©: University of lllinois CS 241 Staff

Thread Argument Passing

int main(int argc, char *argv[]) {

pthread t threads[NUM THREADS] ;
int *taskids[NUM THREADS] ;

int rc, t;

messages|[0]
messages|[1]
messages|[2]
messages|[3]
messages|[4]
messages|[5]

messages|[6]

messages|[7]

"English: Hello World!";

= "French: Bonjour, le monde!";

= "Spanish: Hola el mundo!";

= "Klingon: Nuqgq neH!";

= "German: Guten Tag, Welt!";

= "Russian: Zdravstvytye, mir!";

= "Japanese: Sekai e konnichiwa!";

“Italian: Ciao Mondo!";

Copyright ©: University of lllinois CS 241 Staff

Thread Argument Passing

for (t=0; t<NUM THREADS;t++) {

taskids[t] = (int *) malloc(sizeof(int)) ;
*taskids[t] = t;

printf ("Creating thread %d\n", t);

(void *) taskids[t]):;

rc = pthread create(&threads([t], NULL, PrintHello,

if (rec) {
printf ("ERR; pthread create() ret
exit(-1);

}
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

$d\n", rc);

Thread Argument Passing

for (t=0; t<NUM THR
taskids|[t] =

*taskids[t] =
printf ("Creat:

rc = pthread «

if (rc) {
printf
exit(-1);

}
pthread exit (NULL

Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
0:

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

oo WDNDR

thread
thread
thread
thread
thread
thread
thread
thread 7

English: Hello World!

French: Bonjour, le monde!
Spanish: Hola el mundo!
Klingon: Nuq neH!

German: Guten Tag, Welt!
Russian: Zdravstvytye, mir!
Japanese: Sekai e konnichiwa!
Italian: Ciao Mondo!

o U1 dWDNKHO

Copyright ©: University of lllinois CS 241 Staff

Passing Complex Arguments

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 8

char *messages[NUM THREADS];

struct thread data {
int thread id;
int sum;
char *message;

};

struct thread data thread data array[NUM THREADS] ;

Copyright ©: University of lllinois CS 241 Staff]

Passing Complex Arguments

void *PrintHello (void *threadarqg) {

int taskid, sum;
char *hello msg;
struct thread data *my data;

sleep(l) ;

my data = (struct thread data *) threadarg;
taskid = my data->thread id;

sum = my data->sum;

hello msg = my data->message;

printf ("Thread %d: %s Sum=%d\n", taskid, hello msg, sum);

pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Passing Complex Arguments

int main(int argc, char *argv[]) {

pthread t threads[NUM THREADS] ;

int rc, t,

sum=0;

messages|[0]
messages|[1]
messages|[2]
messages|[3]
messages|[4]
messages|[5]
messages|[6]
messages|[7]

sum,

"English: Hello World!";

= "French: Bonjour, le monde!";

= "Spanish: Hola el mundo!";

= "Klingon: Nuqgq neH!";

= "German: Guten Tag, Welt!";

= "Russian: Zdravstvytye, mir!";

= "Japanese: Sekai e konnichiwa!";

“Italian: Ciao Mondo!";

Copyright ©: University of lllinois CS 241 Staff

Passing Complex Arguments

for (t=0; t<NUM THREADS;t++) {

sum = sum + t;

thread data_array[t].thread id = t;

thread data_array[t].sum = sum;

thread data array[t] .message = messages|[t];

printf ("Creating thread %d\n", t);

rc = pthread create(&threads[t], NULL, PrintHello,
(void *) &thread data array[t]);

if (rec) {
printf ("ERR; pthread create() ret = %d\n", rc);
exit(-1);

}
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Passing Complex Arguments

for(t=0;t<NUM_THREADS;t++) {
sum = sum + t;
thread data_array[t].thread id = t;
thread data_array[t].sum = sum;

rc = pthread create(&threads[t], NULL, PrintHello,
(void *) taskids|[t]);

rc = pthread create(&threads[t], NULL, PrintHello,
(void *) &thread data array[t]);

if (rec) {
printf ("ERR; pthread create() ret = %d\n", rc);
exit(-1);

}
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Passing Complex Arguments

for(t=0;t<NUlcreating thread
sum = suICreating thread
Creating thread
thread di creating thread
thread d: Creating thread
thread d: Creating thread

- Creating thread
Creating thread 7

Thread 0: English: Hello World! Sum=0

o U1 dWDN KO

printf ("(
rc = pths

Thread 1: French: Bonjour, le monde! Sum=1
if (rc) 'Thread 2: Spanish: Hola el mundo! Sum=3
prini Thread 3: Klingon: Nug neH! Sum=6
exit Thread 4: German: Guten Tag, Welt! Sum=10
Thread 5: Russian: Zdravstvytye, mir! Sum=15
} Thread 6: Japan: Sekai e konnichiwa! Sum=21
} Thread 7: Italian: Ciao Mondo! Sum=28

pthread exit (nuiwy);

Copyright ©: University of lllinois CS 241 Staff

Incorrect Argument Passing

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 8

void *PrintHello (void *threadid)
{

int *id ptr, taskid;

sleep (1) ;

id ptr = (int *) threadid;

taskid = *id ptr;

printf ("Hello from thread %d\n", taskid);
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Incorrect Argument Passing

The loop that creates threads
int main(int argc, char *argv[]) ({ modifies the content of the
pthread t threads[NUM THREADS]; vygriable passed by address,

int rc, t; before the created threads can
access it.
for (t=0; t<NUM THREADS; t++) {
printf ("Creating thread %d\n", t); ///////
rc = pthread create(&threads[t], L, PrintHello,
(void *) &t)7
if (rc) {
printf ("ERR; pthread create() ret = %d\n", rc);
exit(-1);

}
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff]

Incorrectly returning data through
pthread join()

What will happen here?

void *thread(void *vargp) {
exit(42) ;

int main() {
int 1i;
pthread t tid;

pthread create(&tid, NULL, thread, NULL) ;
pthread join(tid, (wvoid **)&i) ;
printf ("%d\n",1i) ;

Copyright ©: University of lllinois CS 241 Staff

Incorrectly returning data through
pthread join()

void *thread(void *vargp) { What will happen here?

pthread detach (pthread self())
pthread exit((void*)42);

int main() {
int i = 0;
pthread t tid;

pthread create(&tid, NULL, thread, NULL);
pthread join(tid, (wvoid**)é&i);
printf ("%d\n",1i);

Copyright ©: University of lllinois CS 241 Staff]

|

Common Ways to Structure
Multi-threaded Code

Manager/worker

Single thread (manager) assigns work to other threads
(workers)

Manager handles all input and parcels out work

Copyright ©: University of Illinois CS 241 Staff

Manager/Worker Model

@@

Manager: Worker:
create N workers
forever { forever {
get a request wait for request

pick free worker perform task

Copyright ©: University of Illinois CS 241 Staff 31]

|

Common Ways to Structure
Multi-threaded Code

Pipeline
Task is broken into a series of sub-tasks
Each sub-task is handled by a different thread

Copyright ©: University of Illinois CS 241 Staff

Pipeline Model
(M) ——@-0-0-@

Manager: Stage N:

create N stages forever {

forever { wait for request
get a request perform task

pick 1st stage pick stage n+l

Copyright ©: University of Illinois CS 241 Staff 33]

Pthreads on GNU/Linux

on GNU/Linux, threads are implemented as processes.
Whenever you call pthread_create to create a new thread,
Linux creates a new "“light” process that runs that thread.

Each thread maps to a kernel scheduling entity.

=»Scheduler handles pthreads as regular processes (you
can assign a scheduling priority to each thread!)

ptherad_t identifier is MEANINGFUL only in the process
that created it and is not visible outside. So for instance,
you cannot send a pthread_kill to a thread of another
process.

Copyright ©: University of lllinois CS 241 Staff]

[pthread_t identifier

More details for Linux:

O

pthread_self() will get you an identifier that is unique across your
program, but not across your system. Although thread is a system
object, the system is unaware of the identifier POSIX library
allocated for the thread. On the contrary, Linux identifies threads
with PID like number called TID: these numbers are system-wide.

each Thread in a process has different Thread ID and share same
Process ID. if you are working with pthread library funtions, these
funtions don’t use these TIDs because these are kernel/OS level
(non-POSIX) thread IDs.

In a single-threaded process, the Thread ID is equal to the Process
ID (PID, as returned by getpid(2)). In a multithreaded process, all
threads have the same PID, but each one has a unique TID.

Copyright ©: University of lllinois CS 241 Staff]

[pthread_t identifier

More details for Linux:

o Do you want to see your threads listed when invoking ps?

o Try: ps—-T
PID SPID TTY
4932 4932 pts/1
4935 4935 pts/3
4937 4937 pts/1
4937 4938 pts/1
4967 4967 pts/3

TIME CMD
00:00:00 xterm
00:00:00 bash
00:00:00 a.out
00:09:01 a.out
00:00:00 ps

Copyright ©: University of lllinois CS 241 Staff

