Virtual Memory:
appendix

Copyright ©: University of Illinois CS 241 Staff

Page Fault Frequency (PFF)
[algorithm

Approximation of pure Working Set

o Assume that working set strategy is valid; hence, properly
sizing the resident set will reduce page fault rate.

o Let’ s focus on process fault rate rather than its exact page
references

o If process page fault rate increases beyond a maximum
threshold, then increase its resident set size.

o If page fault rate decreases below a minimum threshold,
then decrease its resident set size

= Without harming the process, OS can free some frames and
allocate them to other processes suffering higher PFF 1

Page

Fault Frequency

Working Set

Page
Fault
Rate

MWorking set to small
Page Rate for Single Process

S

Reasonable
Working Set

M‘-

Working Set too large
-

Number of
Page Frames

Copyright ©: University of Illinois CS 241 Staff

[Exploiting Locality

Temporal locality

o Memory accessed recently tends to be
accessed again soon

Spatial locality

o Memory locations near recently-accessed
memory is likely to be referenced soon

Copyright ©: University of Illinois CS 241 Staff 4]

Exploiting Locality

Locality helps reduce the frequency of page

faults

o Once something is in memory, it should be used
many times

Page fault rate depends on many things

o The amount of locality and reference patterns in
a program
The page replacement policy

The amount of physical memory and application
memory footprint

Copyright ©: University of Illinois CS 241 Staff

Page Replacement Strategies

OPT

o Evict page that won't be
used for the longest time
in the future

Random page replacement
o Choose a page randomly

FIFO - First in First Out

o Replace the page that has
been in primary memory
the longest

LRU - Least Recently Used

o Replace the page that has
not been used for the
longest time

LFU - Least Frequently
Used

o Replace the page that is
used least often

NRU - Not Recently Used

o An approximation to LRU.

Working Set

o Keep in memory those
pages that the process is
actively using.

Copyright ©: University of Illinois CS 241 Staff

Page Replacement Strategies

The Optimal Algorithm

O

Among all pages in frames, evict the one that
has its next access farthest into the future

Can prove formally this does better than any
other algorithm

OPT is useful as a “yardstick” to compare the
performance of other (implementable) algorithms
against

Realistic?

Copyright ©: University of Illinois CS 241 Staff 7]

The Optimal Page
Replacement Algorithm

ldea

o Select the page that will not be needed for the
longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page O | a| & & @& @&
Frames 1 b b b b b

2 c o] o] c c

3 d d d d d

Page faults X

Copyright ©: University of Illinois CS 241 Staff

The Optimal Page
Replacement Algorithm

|dea:

o Select the page that will not be needed for the
longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a
Frames 1 b b b b b b b b b b

2 c o] o] c c c c c c c

3 d d d d d = e = & =

Page faults X X

Copyright ©: University of Illinois CS 241 Staff

The Optimal Page
Replacement Algorithm

|dea:

o Select the page that will not be needed for the
longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a a
Frames 1 b b b b b b b b b b b
2 c o] o] c c c c c c c c
3 d d d d d = e = & = d

Page faults X X

Copyright ©: University of Illinois CS 241 Staff

Replacement Algorithm

[The Optimal Page

Problems?

O

O

Can’ t know the future of a program

Can’ t know when a given page will be needed
next

The optimal algorithm is unrealizable

Copyright ©: University of Illinois CS 241 Staff

FIFO Page Replacement
Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C a
Page 0 | a a @a @&
Frames 1 b b

2 c o] o] c c

3 d d d
Page faults X

Copyright ©: University of Illinois CS 241 Staff

FIFO Page Replacement

Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 2 3 4 5 6 7 8 9 10
Requests a d b e b a b C a
Page 0 a a a a a a a a
Frames 1 b b b b b b

2 c o] c c = = = =

3 d d d d d d d

Page faults

X X

Copyright ©: University of Illinois CS 241 Staff 13]

FIFO Page Replacement

Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 2 3 4 5 6 7 8 9 10
Requests a d b e b a b C a
Page 0 a a a a a a a a C
Frames 1 b b b b b b I

2 c o] c c = = = = =

3 d d d d d d d d

Page faults

X X X

Copyright ©: University of Illinois CS 241 Staff 14]

FIFO Page Replacement

Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 2 3 4 5 6 7 8 9 10
Requests a d b e b a b C a
Page 0 a a a a a a a a C c
Frames 1 b b b b b b I I
2 c o] o] c = = = = = =
3 d d d d d d d d a

Page faults

X X X

Copyright ©: University of Illinois CS 241 Staff 15]

FIFO Page Replacement
Algorithm

Why might FIFO be good?

O

Maybe the page allocated very long ago isn’ t
used anymore

Why might FIFO not be so good?

@)

O

O

Doesn’ t consider locality of reference!
The oldest page may be needed again soon
Some page may be important throughout

execution Bglady’ s anomaly: Performance of
an application might get worse as
physical memory increases!!!

Copyright ©: University of Illinois CS 241 Staff

s i

Belady's Anomaly

Given a reference
string, it would be
natural to assume
that

o The more the total
number of frames in

—_ -
N A~

—
(@]
T T T T T T T T

number of page faults

N B~ OO

main memory, the L g 3 - 5

number of frames

fewer the number of
page faults Not true for some

algorithms!
o E.g., for FIFO

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

Consider FIFO page replacement

o Look at this reference string
012301401234

o Case 1:
3 frames available

o Case 2:
4 frames available

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

FIFO with 3 page frames
o 1. 2 3 0 1 4 0 1 2 3 4

Youngest Page

Oldest Page

FIFO with 4 page frames
o 1 2 3 0 1 4 0 1 2 3 4

Youngest Page

Oldest Page

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

FIFO with 3 page frames

o 1 2 3 0 1 4 0 1 2 3 4

Youngest Page o(1|2|3|0|1|4|4|4]|2]|3]|3

o|11(2(3|10(1 1] 1[4] 2] 2

Oldest Page o(1(2 (300|014 4
PP PP P P P P P

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

FIFO with 3 page frames

Youngest Page

Oldest Page

Youngest Page

Oldest Page

o 1. 2 3 0 1 4 0 1 2 3 4
o112 (3|0|1(4]|4 42|33
o(1|12(310|1({1|1]14]|2]2
O 112(3|]0(0]0|1([4]4

PP PP P P P P P

FIFO with 4 page frames

o 1 2 3 0 1 4 0 1 2 3 4
o(112|13|3|3[4[0(12]|]3]| 4
o122 |2|3|4|0|1]2]3
o11{1(112(3|14]0|1]2
Oo(o0(0|1]12]|3[|4]0{|1
P P P P P PP P PP

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

FIFO with 3 page frames

Youngest Page

Oldest Page

Youngest Page

Oldest Page

o 1. 2 3 0 1 4 0 1 2 3 4
o112 (3|0|1(4]|4 42|33
0| 11| 2 |9 page faults 114122
O 112(3|]0(0]0|1([4]4

PP PP P P P P P

FIFO with 4 page frames

o 1 2 3 0 1 4 0 1 2 3 4
o(11213]3]|]3[4]0|1(2]| 3|4
o] 1] 2]10 page faults[| 0 [1 | 2 | 3
o11{1(112(3|14]0|1]2
Oo(o0(0|1]12]|3[|4]0{|1
P P P P P PP P PP

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Algorithm
(LRU)

Keep track of when a page is used

Replace the page that has been used least
recently

o Keep track of when pages are referenced to
make a better decision

o Use past behavior to predict future behavior
LRU uses past information
OPT uses future information

Not optimal
Does not suffer from Belady's anomaly

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Algorithm

(LRU

)

Keep track of when a page is used
Replace the page that has been used least

recent

Time
Requests

0

y (farthest in the past)

Page 0
Frames 1
2
3

(oMo TN o a

Page faults

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Algorithm

(LRU)

Keep track of when a page is used

Replace the page that has been used least

recently (farthest in the past)
Time 0 1 2 3 4 5 6 7 10
Requests C a d b e b a d
Page O | a| & & @& @&
Frames 1 b b b b b
2 C C C o] c
3 d d d d d

Page faults

Copyright ©: University of Illinois CS 241 Staff

[Least Recently Used Algorithm

(LRU)

Keep track of when a page is used

Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 10
Requests C a d b e b a b d
Page 0 a a a a a a a a a
Frames 1 p| P b b b b b b b

2 c c c c c & & e e

3 d| d 4 4 4 4 d4d d d
Page faults X

Copyright ©: University of Illi

nois CS 241 Staff

[Least Recently Used Algorithm

(LRU)

Keep track of when a page is used

Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 al @ a@a a a a a a a a
Frames 1 | bp| P b b b b b b Db b

2 c | c c c c e e e e e

3 d| 4 4 d4 d d4d d d d «c
Page faults X X X

Copyright ©: University of Illi

nois CS 241 Staff

[Least Recently Used Algorithm

(LRU)

Keep track of when a page is used

Replace the page that has been used least

recently (farthest in the past)
Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a a
Frames 1 b b b b b b b b b b b
2 fe) o] o] o] o] e e e e e d
3 d d d d d d d d d C c
Page faults X X X

Copyright ©: University of Illi

nois CS 241 Staff

Least Recently Used Issues

Implementation

o Use time of last reference
Update every time page accessed (use system clock)
Page replacement - search for oldest time

o Use a stack
On page access : remove from stack, push on top
Victim selection: select page at bottom of stack

Problems or limitations?

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Issues

Implementation

o Use time of last reference
Update every time page accessed (use system clock)
Page replacement - search for smallest time

o Use a stack
On page access : remove from stack, push on top
Victim selection: select page at bottom of stack

Problems or limitations?

o Both approaches require large processing overhead, more
space, and hardware support

32-bit timestamp would double size of PTE

Copyright ©: University of Illinois CS 241 Staff 30]

Least Recently Used Issues

3 frames of physical memory

Run this for a long time with LRU page replacement:

while true
for (1 = 0; i < 4; i++)
read from page 1

Q1: What fraction of page accesses are faults?
None or almost none

About 1in 4

About 2in4

About 3in 4

All or almost all

Q2: How well does OPT do?

O O O O O

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used

3 frames of physical memory
Run this for a long time with LRU page replacement:
while true
for (1 = 0; i < 4; i++)
read from page 1

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames| 1
2

Page faults

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used

3 frames of physical memory

Run this for a long time with LRU page replacement:

while true
for (1 = 0; i < 4; i++)

read from page 1

Time o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Page [0 o o o 3 3 3 2 2 2 1 1 1 o0 o0 o0
Frames| 1 1 1 1 0 0 0 3 3 3 2 2 2 1 1

2 2 2 2 1 1 1 o0 o0 o 3 3 3 2
Page faults X X X X X X X X X X X X X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Issues

3 frames of physical memory

Run this for a long time with LRU page replacement:

while true
for (1 = 0; i < 4; i++)
read from page 1

Q1: What fraction of page accesses are faults?
None or almost none

About 1in 4

About 2in4

About 3in 4

All or almost all

Q2: How well does OPT do?

O O O O O

Copyright ©: University of Illinois CS 241 Staff

OPT

3 frames of physical memory
Run this for a long time with LRU page replacement:
while true
for (1 = 0; i < 4; i++)
read from page 1

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames| 1
2

Page faults

Copyright ©: University of Illinois CS 241 Staff

OPT

3 frames of physical memory

Run this for a long time with LRU page replacement:
while true

for (1 = 0; i < 4; i++)

read from page 1

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0
Page 0 0 0 0 0 0 0 0 0 0 1 1 1 1
Frames

[
[
=
=
=
=
N
N
N
N
N
N
N

Page faults x X X X X

Copyright ©: University of Illinois CS 241 Staff

LRU Approximation Algorithms

Not used recently/Not recently used (NUR/
NRU)

Accessed Bit in each page table entry
o With each page, associate a bit, initially = 0
o When page is accessed, bit is set to 1

o Victim Selection
Any page with reference bit == 0, if one exists.
BUT: we do not know order of use

Copyright ©: University of Illinois CS 241 Staff

LRU Approximation Algorithms

Additional Accessed Bits Algorithm

O

Use the PTE accessed bit and a small counter
per page (2 or 3 bits in PTE)
Periodically (say every 100 msec), scan all
physical pages. For each page:
If not accessed recently, (PTE accessed bit == 0),
counter++

If accessed recently (PTE accessed bit == 1),
counter = 0

Clear the PTE accessed bit in either case!

Copyright ©: University of Illinois CS 241 Staff

LRU Approximation Algorithms

Additional Accessed Bits Algorithm

o Counter will contain the number of scans since
the last reference to this page

PTE that contains the highest counter value is the
least recently used

So, evict the page with the highest counter

Copyright ©: University of Illinois CS 241 Staff

auwlj

Approximate LRU

Accessed pages
in blue

Increment counter

O/ 1110 0{1}1{0[1]0|1]1|0]| 0] foruntouched pages

Accessed pages
in blue

Highlighted pages have

0/2/0/0/0|1|2[2|0|0|1|0[2]| 1| 0| the highest counter

value and can be

evicted. -
Copyright ©: University of Illinois CS 241 Staff 40 ﬂ

Clock Algorithm

Treats page frames allocated to a
process as a circular buffer

Set accessed bit on access -

Pointer (clock) sweeps over page
frames J

o Look for victim page with accessed

bit unset

o If bitis set, clear it and move on to
next page

o Replace pages that haven’t been
referenced for one complete clock
revolution

Copyright ©: University of Illinois CS 241 Staff

Clock Algorithm

= “Clock pointer” scans over page frames
o Clock pointer loops around when it gets to end of circular buffer

= If PTE accessed bit == 1, clear bit and advance pointer to give
it a second-chance

= If PTE accessed bit == 0, evict this page
o No need for a counter in the PTE!

HRRRRA

Clock hand

Evict!

Copyright ©: University of Illinois CS 241 Staff

Accessed pages
in blue

