

Copyright ©: University of Illinois CS 241 Staff 1

Virtual Memory:
appendix

Page Fault Frequency (PFF)
algorithm

n Approximation of pure Working Set
¡  Assume that working set strategy is valid; hence, properly

sizing the resident set will reduce page fault rate.
¡  Let’s focus on process fault rate rather than its exact page

references
¡  If process page fault rate increases beyond a maximum

threshold, then increase its resident set size.
¡  If page fault rate decreases below a minimum threshold,

then decrease its resident set size
è Without harming the process, OS can free some frames and

allocate them to other processes suffering higher PFF

Page Fault Frequency
Working Set

Copyright ©: University of Illinois CS 241 Staff 3

Exploiting Locality

n  Temporal locality
¡  Memory accessed recently tends to be

accessed again soon
n  Spatial locality

¡  Memory locations near recently-accessed
memory is likely to be referenced soon

Copyright ©: University of Illinois CS 241 Staff 4

Exploiting Locality

n  Locality helps reduce the frequency of page
faults
¡  Once something is in memory, it should be used

many times
n  Page fault rate depends on many things

¡  The amount of locality and reference patterns in
a program

¡  The page replacement policy
¡  The amount of physical memory and application

memory footprint
Copyright ©: University of Illinois CS 241 Staff 5

Page Replacement Strategies

n  OPT
¡  Evict page that won't be

used for the longest time
in the future

n  Random page replacement
¡  Choose a page randomly

n  FIFO - First in First Out
¡  Replace the page that has

been in primary memory
the longest

n  LRU - Least Recently Used
¡  Replace the page that has

not been used for the
longest time

n  LFU - Least Frequently
Used
¡  Replace the page that is

used least often
n  NRU - Not Recently Used

¡  An approximation to LRU.
n  Working Set

¡  Keep in memory those
pages that the process is
actively using.

Copyright ©: University of Illinois CS 241 Staff 6

Page Replacement Strategies

n  The Optimal Algorithm
¡  Among all pages in frames, evict the one that

has its next access farthest into the future
¡  Can prove formally this does better than any

other algorithm
¡  OPT is useful as a “yardstick” to compare the

performance of other (implementable) algorithms
against

¡  Realistic?

Copyright ©: University of Illinois CS 241 Staff 7

8

The Optimal Page
Replacement Algorithm

n  Idea
¡  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

9

The Optimal Page
Replacement Algorithm

n  Idea:
¡  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c c c c c c
d d d d e e e e e

 X X

Copyright ©: University of Illinois CS 241 Staff

10

The Optimal Page
Replacement Algorithm

n  Idea:
¡  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c c c c c c c
d d d d e e e e e d

 X X

Copyright ©: University of Illinois CS 241 Staff

11

The Optimal Page
Replacement Algorithm

n  Problems?
¡  Can’t know the future of a program
¡  Can’t know when a given page will be needed

next
¡  The optimal algorithm is unrealizable

Copyright ©: University of Illinois CS 241 Staff

12

FIFO Page Replacement
Algorithm

n  Always replace the oldest page
n  Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

 a a a
 b
c c c c
 d d

 X

Copyright ©: University of Illinois CS 241 Staff

13

FIFO Page Replacement
Algorithm

n  Always replace the oldest page
n  Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

 a a a a a a a
 b b b b b
c c c c e e e e
 d d d d d d

 X X

Copyright ©: University of Illinois CS 241 Staff

14

FIFO Page Replacement
Algorithm

n  Always replace the oldest page
n  Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

 a a a a a a a c
 b b b b b b
c c c c e e e e e
 d d d d d d d

 X X X

Copyright ©: University of Illinois CS 241 Staff

15

FIFO Page Replacement
Algorithm

n  Always replace the oldest page
n  Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

 a a a a a a a c c
 b b b b b b b
c c c c e e e e e e
 d d d d d d d a

 X X X

Copyright ©: University of Illinois CS 241 Staff

FIFO Page Replacement
Algorithm

n  Why might FIFO be good?
¡  Maybe the page allocated very long ago isn’t

used anymore
n  Why might FIFO not be so good?

¡  Doesn’t consider locality of reference!
¡  The oldest page may be needed again soon
¡  Some page may be important throughout

execution

Copyright ©: University of Illinois CS 241 Staff 16

Belady’s anomaly: Performance of
an application might get worse as
physical memory increases!!!

Belady's Anomaly

n  Given a reference
string, it would be
natural to assume
that
¡  The more the total

number of frames in
main memory, the
fewer the number of
page faults n  Not true for some

algorithms!
¡  E.g., for FIFO

Copyright ©: University of Illinois CS 241 Staff 17

18

Belady's Anomaly

n  Consider FIFO page replacement
¡  Look at this reference string

n  012301401234

¡  Case 1:
n  3 frames available

¡  Case 2:
n  4 frames available

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff 19

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 3 page frames

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 4 page frames

20

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1
0

2
1
0

3
2
1

0
3
2

1
0
3

4
1
0

4
1
0

4
1
0

2
4
1

3
2
4

3
2
4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 3 page frames

P P P P P P P P P

21

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1
0

2
1
0

3
2
1

0
3
2

1
0
3

4
1
0

4
1
0

4
1
0

2
4
1

3
2
4

3
2
4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 4 page frames

P P P P P P P P P

0 1
0

3
2
1
0

3
2
1
0

0
4
3
2

1
0
4
3

2
1
0
4

3
2
1
0

4
3
2
1

3
2
1
0

4
3
2
1

2
1
0

P

22

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1
0

2
1
0

3
2
1

0
3
2

1
0
3

4
1
0

4
1
0

4
1
0

2
4
1

3
2
4

3
2
4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4
FIFO with 4 page frames

P P P P P P P P P

0 1
0

3
2
1
0

3
2
1
0

0
4
3
2

1
0
4
3

2
1
0
4

3
2
1
0

4
3
2
1

3
2
1
0

4
3
2
1

2
1
0

P

9 page faults

10 page faults

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently
¡  Keep track of when pages are referenced to

make a better decision
¡  Use past behavior to predict future behavior

n  LRU uses past information
n  OPT uses future information

n  Not optimal
n  Does not suffer from Belady's anomaly

Copyright ©: University of Illinois CS 241 Staff 23

24

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

Copyright ©: University of Illinois CS 241 Staff

25

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

26

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a
b b b b b b b b
c c c c e e e e
d d d d d d d d

 X X

Copyright ©: University of Illinois CS 241 Staff

27

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c e e e e e
d d d d d d d d c

 X X X

Copyright ©: University of Illinois CS 241 Staff

28

Least Recently Used Algorithm
(LRU)

n  Keep track of when a page is used
n  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d
d d d d d d d d c c

 X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Issues

n  Implementation
¡  Use time of last reference

n  Update every time page accessed (use system clock)
n  Page replacement - search for oldest time

¡  Use a stack
n  On page access : remove from stack, push on top
n  Victim selection: select page at bottom of stack

n  Problems or limitations?

Copyright ©: University of Illinois CS 241 Staff 29

Least Recently Used Issues

n  Implementation
¡  Use time of last reference

n  Update every time page accessed (use system clock)
n  Page replacement - search for smallest time

¡  Use a stack
n  On page access : remove from stack, push on top
n  Victim selection: select page at bottom of stack

n  Problems or limitations?
¡  Both approaches require large processing overhead, more

space, and hardware support
n  32-bit timestamp would double size of PTE

Copyright ©: University of Illinois CS 241 Staff 30

Least Recently Used Issues

n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

n  Q1: What fraction of page accesses are faults?
¡  None or almost none
¡  About 1 in 4
¡  About 2 in 4
¡  About 3 in 4
¡  All or almost all

n  Q2: How well does OPT do?

Copyright ©: University of Illinois CS 241 Staff 31

Least Recently Used
n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

Copyright ©: University of Illinois CS 241 Staff 32

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames 1
 2

Page faults

Least Recently Used
n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

Copyright ©: University of Illinois CS 241 Staff 33

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames 1
 2

Page faults

0 0 0 3 3 3 2 2 2 1 1 1 0 0 0
 1 1 1 0 0 0 3 3 3 2 2 2 1 1
 2 2 2 1 1 1 0 0 0 3 3 3 2

X X X X X X X X X X X X X X X

Least Recently Used Issues

n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

n  Q1: What fraction of page accesses are faults?
¡  None or almost none
¡  About 1 in 4
¡  About 2 in 4
¡  About 3 in 4
¡  All or almost all

n  Q2: How well does OPT do?

Copyright ©: University of Illinois CS 241 Staff 34

OPT
n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

Copyright ©: University of Illinois CS 241 Staff 35

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames 1
 2

Page faults

OPT
n  3 frames of physical memory
n  Run this for a long time with LRU page replacement:
 while true

 for (i = 0; i < 4; i++)
 read from page i

Copyright ©: University of Illinois CS 241 Staff 36

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Requests 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Page 0
Frames 1
 2

Page faults

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
 1 1 1 1 1 2 2 2 2 2 2 2 2 2
 2 3 3 3 3 3 3 3 3 3 0 0 0

X X X X X X X

LRU Approximation Algorithms

n  Not used recently/Not recently used (NUR/
NRU)

n  Accessed Bit in each page table entry
¡  With each page, associate a bit, initially = 0
¡  When page is accessed, bit is set to 1
¡  Victim Selection

n  Any page with reference bit == 0, if one exists.
n  BUT: we do not know order of use

Copyright ©: University of Illinois CS 241 Staff 37

LRU Approximation Algorithms

n  Additional Accessed Bits Algorithm
¡  Use the PTE accessed bit and a small counter

per page (2 or 3 bits in PTE)
¡  Periodically (say every 100 msec), scan all

physical pages. For each page:
n  If not accessed recently, (PTE accessed bit == 0),

counter++
n  If accessed recently (PTE accessed bit == 1),

counter = 0
n  Clear the PTE accessed bit in either case!

Copyright ©: University of Illinois CS 241 Staff 38

LRU Approximation Algorithms

n  Additional Accessed Bits Algorithm
¡  Counter will contain the number of scans since

the last reference to this page
n  PTE that contains the highest counter value is the

least recently used
n  So, evict the page with the highest counter

Copyright ©: University of Illinois CS 241 Staff 39

Approximate LRU

Copyright ©: University of Illinois CS 241 Staff 40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0

tim
e Accessed pages

in blue

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0
Increment counter
for untouched pages

0 2 0 0 0 1 2 2 0 0 1 0 2 1 0
Highlighted pages have
the highest counter
value and can be
evicted.

Accessed pages
in blue

Clock Algorithm

n  Treats page frames allocated to a
process as a circular buffer

n  Set accessed bit on access
n  Pointer (clock) sweeps over page

frames
¡  Look for victim page with accessed

bit unset
¡  If bit is set, clear it and move on to

next page
¡  Replace pages that haven’t been

referenced for one complete clock
revolution

Copyright ©: University of Illinois CS 241 Staff 41

Clock Algorithm

n  “Clock pointer” scans over page frames
¡  Clock pointer loops around when it gets to end of circular buffer

n  If PTE accessed bit == 1, clear bit and advance pointer to give
it a second-chance

n  If PTE accessed bit == 0, evict this page
¡  No need for a counter in the PTE!

Copyright ©: University of Illinois CS 241 Staff 42

Clock hand

Accessed pages
in blue

Evict!

