An Introduction to Memory
Management: appendix

Copyright ©: University of Illinois CS 241 Staff

Memory partitioning

Nowadays memory management is based on a
sophisticated technique known as (paged) virtual memory.

Before studying virtual memory, we will review simpler but
outdated memory management mechanisms for
multiprogramming systems:

o Fixed partitioning

o Dynamic partitioning

Copyright ©: Nahrstedt, Angrave, Abdelzaher 2]

Fixed partitioning

A simple scheme to manage the available user memory is to
partition it in several regions of equal size (e.g., 8Mb partitions)

As another option the memory can be partitioned in fixed
regions of different sizes (e.g., 2Mb,4Mb,6Mb,8Mb partitions)

Problems:

o If a program does not fit in the available fixed size, the program must be
designed by using overlays (only a part of the program needs to be in
main memory at any given time)

o Internal fragmentation
o Not all processes may fit in memory

Copyright ©: Nahrstedt, Angrave, Abdelzaher 3]

Multiple Fixed Partitions

Ok In use
Divide
memory into Ak [] Free Space
n (possibly
unequal) Fixed boundaries
partitions. between memory

16k allocations

128k

Copyright ©: University of lllinois CS 241 Staff

Multiple Fixed Partitions

First memory
allocation

Ok

Second memory
allocation

Third memory
allocation

FourtH ndemory
allogation

In use

- Free Space
4K

Copyright ©: University of lllinois CS 241 Staff

Internal
16k fragmentation
(cannot be
reallocated)
128k

Memory assignment for
fixed partitioning

0S 0S
> 2Mb 2Mb
) > 2Mb 2Mb
> 4Mb 4Mb
New —> —>
Ly 8Mb processes 8Mb
New
processe
N > 8Mb 8Mb
A process is always reloaded A process can be reloaded
in the same partition in any partition

(relocation is not neededy, ight ©: Nahrstedt, Angrave, Abdelzaher (relocation is needed) .]

Memory assignment for
fixed partitioning

Separate input queue for each partition

o Requires sorting the incoming jobs and putting them into separate
queues
o Inefficient utilization of memory

when the queue for a large partition is empty but the queue for a small
partition is full. Small jobs have to wait to get into memory even though
memory has plenty of free space.

One single input queue for all partitions.

o Allocate a partition where the job fits in.
Best Fit
Worst Fit
First Fit

Copyright ©: Nahrstedt, Angrave, Abdelzaher 7]

[Problem: Insufficient Memory

What if there are more processes than
could fit into the memory?

Swapping

Copyright ©: University of Illinois CS 241 Staff

[Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff 9]

Swapping

Monitor

User ____,//////
Partition

Copyright ©: University of Illinois CS 241 Staff 10]

[Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff 11 ﬂ

| Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

| Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

| Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

| Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Dynamic partitions

Task A

Partitions are of variable length and
number

When a process is loaded, it is
allocated exactly as much memory
as it needs and no more

Problems:
o External fragmentation

o It requires periodic compaction and
task relocation

Free Space

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Storage Placement Strategies

First fit

o Use the first available hole whose size is sufficient to meet
the need

Best fit

o Use the hole whose size is equal to the need, or if none is
equal, the hole that is larger but closest in size

Worst fit

o Use the largest available hole

Copyright ©: University of Illinois CS 241 Staff 17]

Example

Consider a system in which memory
consists of the following hole sizes in
memory order:

o 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

o Which hole is taken for successive segment
requests of:
12K
10K
oK

Copyright ©: University of Illinois CS 241 Staff

Example

Consider a system in which memory

consists of the following hole sizes in

memory order:

o 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
o Which hole is taken for successive segment

requests of:

12K

10K First fit;
20K, 10K,

9K 18K.

Best fit:
12K, 10K,
oK.

Worst fit:
20K, 18K,
and 15K.

Copyright ©: University of Illinois CS 241 Staff

Storage Placement Strategies

Best fit

o Produces the smallest leftover hole
o Creates small holes that cannot be used

Worst Fit

o Produces the largest leftover hole
o Difficult to run large programs

First Fit

o Creates average size holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 20]

Fragmentation

Internal Fragmentation
= When an allocated block is larger than data it holds

External Fragmentation

=« When aggregate free space would be large enough to
satisfy request but no single free block is large enough

Monitor [JSB IGBSN | Job3 [Job8 | [NGHEN

Copyright ©: Nahrstedt, Angrave, Abdelzaher 21]

[Fragmentation

Internal Fragmentation

o Allocated memory may be larger than
requested memory

o The extra memory is internal to a partition
and it cannot be used

External Fragmentation

o Memory space exists to satisfy a request,
but it is not contiguous

Copyright ©: University of Illinois CS 241 Staff 22]

[How Bad |Is Fragmentation?

Statistical analysis - Random job sizes
First-fit
o Given N allocated blocks

o 0.5*N blocks will be wasted on average,
because of internal fragmentation

Known as 50% RULE

Copyright ©: University of Illinois CS 241 Staff 23]

[Compaction

Reduce external fragmentation by
compaction

o Move jobs in memory to place all free
memory together in one large block

o Compaction is possible only if run-time
process relocation is supported

Copyright ©: University of Illinois CS 241 Staff

Compaction

Monitor [Job 7| | Job 5 Job 3 Job 8 Job 6
Monitor (Job 7| Job 5 Job 3 Job 8 Job 6
Monitor [Job 7| Job 5 | Job 3 Job 8 Job 6
Monitor |Job 7| Job 5 | Job 3 Job 8 Job 6
Monitor |Job 7| Job 5 | Job 3 Job 8 Job 6 Free

Copyright ©: University of Illinois CS 241 Staff

[Storage Management Problems
Fixed partitions suffer from

Dynamic partitions suffer from

Compaction suffers from

Copyright ©: University of Illinois CS 241 Staff

[Storage Management Problems

Fixed partitions suffer from
o Internal fragmentation

Dynamic partitions suffer from
o External fragmentation

Compaction suffers from
o Overhead

Copyright ©: University of Illinois CS 241 Staff

Relocation

Assume relocation is not supported: when the process is first loaded, all
memory references in the code are replaced by absolute main memory

addresses

o Different processes will be loaded at different absolute addresses or swapping
IS necessary

o ltis a strong limitation since a swapped process must always be reloaded in the
same partition

Relocation allows a process to occupy different partitions during its lifetime.
It relies on notion of logical and physical addresses (it requires hardware
support)

o Logical addresses: range from 0 to max
o Physical addresses: range from R+0 to R+max (given base value R).

o User program never sees the real physical addresses

Copyright ©: Nahrstedt, Angrave, Abdelzaher 28 4]

Relocation:
Logical vs. Physical Addresses

Logical address
o An address meaningful to the user process

o A translation must be made to a physical address
before the memory access can be achieved

Physical address
o Itis an actual location in main (physical) memory

Different processes run at different physical
addresses

o But logical address can be the same

o Program never sees physical addresses

Copyright ©: University of Illinois CS 241 Staff

Relocation:
Dynamic Address Translation

Load each process into contiguous regions of
physical memory

Logical addresses Physical addresses
o Logical address space o Physical address space
o Range: 0 to MAX o Range: R+0 to R+MAX

for base value R

Copyright ©: University of Illinois CS 241 Staff 30]

Dynamic Address Translation

User
process

Translation enforces protection

Logical
addr

Translator
(MMU)

Phys
addr

Physical
memory

o One process can’ t even refer to another process’s
physical address space

Translation enables relocation and protection

Copyright ©: University of Illinois CS 241 Staff

Base Register

CPU

Instruction MA

Address

Base: start of the process’s

Base Register

Logical

BA

MMU

physical memory partition

Base Address

Physical

Address Memory

MA+BA

Copyright ©: University of lllinois CS 241 Staff 32]

Base Register

CPU
Instruction
Address

346

Base: start of the process’ s memory partition

Base Register

Logical

14000

MMU

Base Address

Physical
Address

14346

Memory

Copyright ©: University of lllinois CS 241 Staff 33]

[Protection

= Problem

o How to prevent a malicious process from
writing or jumping into another user's or
OS physical partitions

= Solution
o Base bounds register

Copyright ©: University of Illinois CS 241 Staff

Base and bounds

if (logical_addr > bound)
trap to kernel
} else {
phys addr =
logical addr + base

Process can be relocated

at run-time

Provides protection from logical
other processes also addresses
currently in memory bound

Copyright ©: University of Illinois CS 241 Staff

physical
memory
physical
memory
size

base + bound

base

Base and Bounds Registers

Bounds Register || Base Register

Base Address

Base
Address
BA

Logical
Address LA

CPU
MA+BA
Address
emory Physical| Memory
Address
Address PA
MA Limit Address

Fault

Base: start of the process’ s phys. memory partition

Limit: max address in the process’ s phys. memory partition :
Copyright ©: University of Illinois CS 241 Staff 36]

Another memory management
[technique: Segmentation

Segment
o Region of contiguous memory

Segmentation

o Generalized base and bounds with
support for multiple segments at once

Copyright ©: University of Illinois CS 241 Staff

Segmentation

Seg # | Base |Bound | Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

o4ff

off
0

virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code

Copyright ©: University of Illinois CS 241 Staff

physical
memory

code

stack

data

46ff
4000

2fff

2000

Segmentation

Segments: advantages
over base and bounds?

Protection

o Different segments can
have different protections

Flexibility

o It can separately grow
both a stack and heap

o Enables sharing of code
and other segments if
needed

o4ff
0

off
0

virtual
memory
segment 3

stack

Virtual
memory
segment 1

data

Virtual
memory
segmeny0

code

Copyright ©: University of Illinois CS 241 Staff

physical
memory

code

46ff

4000

stack

2fff

2000

data

Segmentation

What abstraction is not supported well by
segmentation and by B&B?

o Supporting an address space larger than the size of
physical memory

Note: x86 used to support segmentation, now
effectively deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff

