

Copyright ©: University of Illinois CS 241 Staff 1

An Introduction to Memory
Management: appendix

Copyright ©: Nahrstedt, Angrave, Abdelzaher 2 2

Memory partitioning

n  Nowadays memory management is based on a
sophisticated technique known as (paged) virtual memory.

n  Before studying virtual memory, we will review simpler but
outdated memory management mechanisms for
multiprogramming systems:
¡  Fixed partitioning
¡  Dynamic partitioning

Copyright ©: Nahrstedt, Angrave, Abdelzaher 3 3

Fixed partitioning

n  A simple scheme to manage the available user memory is to
partition it in several regions of equal size (e.g., 8Mb partitions)

n  As another option the memory can be partitioned in fixed
regions of different sizes (e.g., 2Mb,4Mb,6Mb,8Mb partitions)

n  Problems:
¡  If a program does not fit in the available fixed size, the program must be

designed by using overlays (only a part of the program needs to be in
main memory at any given time)

¡  Internal fragmentation
¡  Not all processes may fit in memory

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 4

Free Space

0k

4k

16k

64k

128k

Fixed boundaries
between memory
allocations

In use
Divide
memory into
n (possibly
unequal)
partitions.

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 5

Free Space

Second memory
allocation

First memory
allocation

0k

4k

16k

64k

128k

Internal
“fragmentation”

(cannot be
reallocated)

In use

Third memory
allocation

Fourth memory
allocation ?

Copyright ©: Nahrstedt, Angrave, Abdelzaher 6

Memory assignment for
fixed partitioning

OS OS

New
processes

New
processes

2Mb

2Mb

4Mb

8Mb

8Mb

2Mb

2Mb

4Mb

8Mb

8Mb

A process is always reloaded
in the same partition
(relocation is not needed)

A process can be reloaded
in any partition
(relocation is needed)

Copyright ©: Nahrstedt, Angrave, Abdelzaher 7 7

n  Separate input queue for each partition
¡  Requires sorting the incoming jobs and putting them into separate

queues
¡  Inefficient utilization of memory

n  when the queue for a large partition is empty but the queue for a small
partition is full. Small jobs have to wait to get into memory even though
memory has plenty of free space.

n  One single input queue for all partitions.
¡  Allocate a partition where the job fits in.

n  Best Fit
n  Worst Fit
n  First Fit

Memory assignment for
fixed partitioning

Problem: Insufficient Memory

n  What if there are more processes than
could fit into the memory?

n  Swapping

Copyright ©: University of Illinois CS 241 Staff 8

Swapping

Copyright ©: University of Illinois CS 241 Staff 9

Monitor
Disk

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 10

Monitor
Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 11

Monitor

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor

User 2

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor
Disk

User 1

User 2

User
Partition

User 1

Copyright ©: Nahrstedt, Angrave, Abdelzaher 16 16

Dynamic partitions

n  Partitions are of variable length and
number

n  When a process is loaded, it is
allocated exactly as much memory
as it needs and no more

n  Problems:
¡  External fragmentation
¡  It requires periodic compaction and

task relocation

Free Space

Task A

Task B

Task C

Task D

Storage Placement Strategies

n  First fit
¡  Use the first available hole whose size is sufficient to meet

the need

n  Best fit
¡  Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size

n  Worst fit
¡  Use the largest available hole

Copyright ©: University of Illinois CS 241 Staff 17

Example

n  Consider a system in which memory
consists of the following hole sizes in
memory order:
¡  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
¡  Which hole is taken for successive segment

requests of:
n  12K
n  10K
n  9K

Copyright ©: University of Illinois CS 241 Staff 18

Example

n  Consider a system in which memory
consists of the following hole sizes in
memory order:
¡  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
¡  Which hole is taken for successive segment

requests of:
n  12K
n  10K
n  9K

Copyright ©: University of Illinois CS 241 Staff 19

First fit:
20K, 10K,
18K.

Best fit:
12K, 10K,
9K.

Worst fit:
20K, 18K,
and 15K.

Storage Placement Strategies

n  Best fit
¡  Produces the smallest leftover hole
¡  Creates small holes that cannot be used

n  Worst Fit
¡  Produces the largest leftover hole
¡  Difficult to run large programs

n  First Fit
¡  Creates average size holes

n  First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 20

Copyright ©: Nahrstedt, Angrave, Abdelzaher 21

Fragmentation

n  Internal Fragmentation
n  When an allocated block is larger than data it holds

n  External Fragmentation
n  When aggregate free space would be large enough to

satisfy request but no single free block is large enough

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8

Legend
Free Space

Fragmentation

n  Internal Fragmentation
¡  Allocated memory may be larger than

requested memory
¡  The extra memory is internal to a partition

and it cannot be used
n  External Fragmentation

¡  Memory space exists to satisfy a request,
but it is not contiguous

Copyright ©: University of Illinois CS 241 Staff 22

How Bad Is Fragmentation?

n  Statistical analysis - Random job sizes
n  First-fit

¡  Given N allocated blocks
¡  0.5*N blocks will be wasted on average,

because of internal fragmentation

n  Known as 50% RULE
Copyright ©: University of Illinois CS 241 Staff 23

Compaction

n  Reduce external fragmentation by
compaction
¡  Move jobs in memory to place all free

memory together in one large block
¡  Compaction is possible only if run-time

process relocation is supported

Copyright ©: University of Illinois CS 241 Staff 24

Compaction

Copyright ©: University of Illinois CS 241 Staff 25

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Storage Management Problems

n  Fixed partitions suffer from

n  Dynamic partitions suffer from

n  Compaction suffers from

Copyright ©: University of Illinois CS 241 Staff 26

Storage Management Problems

n  Fixed partitions suffer from
¡  Internal fragmentation

n  Dynamic partitions suffer from
¡  External fragmentation

n  Compaction suffers from
¡  Overhead

Copyright ©: University of Illinois CS 241 Staff 27

Copyright ©: Nahrstedt, Angrave, Abdelzaher 28 28

Relocation

n  Assume relocation is not supported: when the process is first loaded, all
memory references in the code are replaced by absolute main memory
addresses
¡  Different processes will be loaded at different absolute addresses or swapping

is necessary
¡  It is a strong limitation since a swapped process must always be reloaded in the

same partition

n  Relocation allows a process to occupy different partitions during its lifetime.
It relies on notion of logical and physical addresses (it requires hardware
support)
¡  Logical addresses: range from 0 to max
¡  Physical addresses: range from R+0 to R+max (given base value R).
¡  User program never sees the real physical addresses

Relocation:
Logical vs. Physical Addresses

n  Logical address
¡  An address meaningful to the user process
¡  A translation must be made to a physical address

before the memory access can be achieved
n  Physical address

¡  It is an actual location in main (physical) memory

n  Different processes run at different physical
addresses
¡  But logical address can be the same

¡  Program never sees physical addresses
 Copyright ©: University of Illinois CS 241 Staff 29

Relocation:
Dynamic Address Translation

n  Load each process into contiguous regions of
physical memory

n  Logical addresses
¡  Logical address space
¡  Range: 0 to MAX

n  Physical addresses
¡  Physical address space
¡  Range: R+0 to R+MAX

for base value R

Copyright ©: University of Illinois CS 241 Staff 30

Dynamic Address Translation

n  Translation enforces protection
¡  One process can’t even refer to another process’s

physical address space

n  Translation enables relocation and protection

Copyright ©: University of Illinois CS 241 Staff 31

User
process

Translator
(MMU)

Physical
memory

Logical
addr

Phys
addr

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 32

Memory

Base Register

CPU
Instruction
Address

+

BA

MA MA+BA

Physical
Address

Logical
Address

Base Address

Base: start of the process’s
physical memory partition

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 33

Memory

Base Register

CPU
Instruction
Address

+

14000

346 14346

Physical
Address

Logical
Address

Base Address

Base: start of the process’s memory partition

Protection

n  Problem
¡  How to prevent a malicious process from

writing or jumping into another user's or
OS physical partitions

n  Solution
¡  Base bounds register

Copyright ©: University of Illinois CS 241 Staff 34

Base and bounds
if (logical_addr > bound)
 trap to kernel
} else {

 phys_addr =
 logical_addr + base

}

n  Process can be relocated
at run-time

n  Provides protection from
other processes also
currently in memory

Copyright ©: University of Illinois CS 241 Staff 35

physical
memory

physical
memory
size

base + bound

base
bound

logical
addresses

0 0

Base and Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 36

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Limit Address

MA+BA

Base
Address

BA

Base: start of the process’s phys. memory partition
Limit: max address in the process’s phys. memory partition

Another memory management
technique: Segmentation

n  Segment
¡  Region of contiguous memory

n  Segmentation
¡  Generalized base and bounds with

support for multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 37

Segmentation

Copyright ©: University of Illinois CS 241 Staff 38

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff 4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

Segmentation

n  Segments: advantages
over base and bounds?

n  Protection
¡  Different segments can

have different protections
n  Flexibility

¡  It can separately grow
both a stack and heap

¡  Enables sharing of code
and other segments if
needed

Copyright ©: University of Illinois CS 241 Staff 39

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff 4ff

2000

2fff

4000

46ff

Segmentation

n  What abstraction is not supported well by
segmentation and by B&B?
¡  Supporting an address space larger than the size of

physical memory

n  Note: x86 used to support segmentation, now
effectively deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 40

