[System Calls and 1/0
Appendix

More System Calls

Directory and File System Management

s = mkdir (name, mode)

Create a new directory

s = rmdir (name)

Remove an empty directory

s = link (name, name)

Create a new entry, name, pointing to name

s = unlink (name)

Remove a directory entry

s = mount (special, name, flag) Mount a file system

s = umount (special)

Unmount a file system

Miscellaneous

s = chdir (dirname)

Change the working directory

s chmod (name, mode)

Change a file’ s protection bits

s = kill (pid, signal)

Send a signal to a process

seconds = time (&seconds)

Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff

Example (open ())

_ Argument: string
#include <fcntl.h> Output: the string, a colon, and a
#include <errno.h> description of the error condition
stored in errno

int main() {

int f£4d;
fd = open("foo.txt", O RDONLY | O CREAT);
if (£fd == -1){
| perror ("Program") ; |
exit(1l);
}

printf ("%d\n", £d);

Copyright ©: University of Illinois CS 241 Staff

Example (close ())

#include <fcntl.h>
main () {
int £dl;

if ((£d1 = open(“foo.txt", O RDONLY)) < 0) {
perror ("cl") ;
exit(1l);
}
if |(close (£d1)| < 0) {
perror ("cl") ;
exit(1l);

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff

Example (close ())

#include <fcntl.h>
main () {
int £dl;

if ((£d1 = open(“foo.txt", O RDONLY)) < 0) {
perror ("cl") ;

exit (1) ;
} After close, can you still use the

_ file descriptor?
if (close(fdl) < 0) {

perror ("cl") ;
exit (1) ; Why do we need to close a file?

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 5]

Example (read ())

#include <fcntl.h> Isz = read(fd, c, 10);
main () { printf ("called
char *c; read(%d, c, 10).
int £d, sz; returned that %d
bytes were
¢ = (char *) malloc (100 read.\n", f£fd, sz);
* sizeof (char)) ; c[sz] = '\0"';

fd = open(“foo.txt",

O _RDONLY) ; printf ("Those bytes
if (£d < 0) { are as follows:
perror ("rl") ; $s\n", c);
exit(l); close (£fd) ;

} }

Copyright ©: University of Illinois CS 241 Staff

Example (write ())

#include <fcntl.h> sz = write(fd, "ecs241\n",
main () strlen("cs241\n")) ;
{
int £d, sz; printf ("called write(%d,
\"ecs241\\n\", %d).
fd = open("out3", it returned %d\n",
O RDWR | O CREAT | fd, strlen("cs241\n"),
O APPEND, 0644) ; sz) ;
if (£d < 0) {
perror ("rl") ; close (£d) ;
exit (1) ; }
}

Copyright ©: University of Illinois CS 241 Staff 7]

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);

Get information about a file

Returns:
o 0 on success
o -1 on error, sets errno

Parameters:

o name: Path to file you want to use
Absolute paths begin with “/”, relative paths do not

o buf: Statistics structure
off t st size: Size in bytes
mode t st mode: protection
time t st mtime: Date of last modification

Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff

[Useful Macros: File types

Is file a symbolic
link

S ISLNK (st mode)
Is file a regular file
S ISREG(st mode)
|s file a character
device

S ISCHR(st mode)

Is file a block
device

S ISBLK (st mode)
Is file a FIFO
S ISFIFO(st mode)

Is file a unix socket
S ISSOCK(st mode)

Copyright ©: University of Illinois CS 241 Staff

Useful Macros: File Modes

S IRWXU (st _mode) S IRGRP (st mode)

o read, write, execute, o read permission, group
owner S IRWXO (st mode)

S_IRUSR(st_mode) o read, write, execute,

o read permission, owner others

S IWUSR (st _mode)
o write permission, owner

S IXUSR (st mode)
O execute, owner

Copyright ©: University of Illinois CS 241 Staff 10]

Example - (stat())

#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
int main(int argc, char **argv) {
struct stat fileStat;
if (argc '= 2)
return 1;
if (stat(argv[l], &fileStat) < 0)
return 1;
printf ("Information for %$s\n",argv[1l]);

printf ("File Size: \t\t%d bytes\n", fileStat.st size);
printf ("Number of hard links: \t%d\n", fileStat.st nlink);

printf ("File inode number: \t\t%d\n", fileStat.st ino);

Copyright ©: University of Illinois CS 241 Staff 11]

Example - (stat())

printf ("File Permissions: \t");
printf((S_ISDIR(fileStat.st mode)) ? "d" : "-");

printf((fileStat.st mode & S _IRUSR) ? "r" : "-=-");
printf((fileStat.st mode & S _IWUSR) ? "w" "—-");;
printf((fileStat.st mode & S IXUSR) ? "x" "-");
printf((fileStat.st mode & S _IRGRP) ? "r" "—-");
printf((fileStat.st mode & S _IWGRP) ? "w" "—-");;
printf((fileStat.st mode & S IXGRP) ? "x" "-");
printf((fileStat.st mode & S IROTH) ? "r" "—-");
printf((fileStat.st mode & S _IWOTH) ? "w" : "-=-");
printf((fileStat.st mode & S _IXOTH) ? "x" : "-=-");

printf ("\n\n"); printf("The file %s a symbolic link\n",
(S_ISLNK(fileStat.st _mode)) ? "is" : "is not");

return 0;

Copyright ©: University of Illinois CS 241 Staff

Example - (stat())

Information for testfile.sh

File Size: 36 bytes
Number of hard links: 1
File inode number: 180055

File Permissions: -rwxr-xr-x

The file is not a symbolic link

Copyright ©: University of Illinois CS 241 Staff

File: Seek

#include <unistd.h>
off t lseek(int fd, off t offset, int whence);

Explicitly set the file offset for the open file

Return: Where the file pointer is
o the new offset, in bytes, from the beginning of the file
o -1onerror, sets errno, file pointer remains unchanged

Parameters:

o £d.: file descriptor
o offset: indicates relative or absolute location
o whence: How you would like to use 1seek
SEEK_SET, set file pointer to offset bytes from the beginning of the file

SEEK_CUR, set file pointer to of fset bytes from current location
SEEK_END, set file pointer to of£set bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff

File: Seek Examples

Random access
o Jump to any byte in a file

Move to byte #16

newpos = lseek(fd, 16, SEEK SET) ;

Move forward 4 bytes
newpos = lseek(fd, 4, SEEK CUR);

Move to 8 bytes from the end

newpos = lseek(fd, -8, SEEK END) ;

Copyright ©: University of Illinois CS 241 Staff

Example (1seek ())

¢ = (char *) malloc (100 *
sizeof (char)) ;

fd = open(“foo.txt", O RDONLY) ;
if (£d < 0) {

perror ("rl") ;

exit(1l);

sz = read(fd, c, 10);

printf ("We have opened inl, and

called read(%d, c, 10).\n",
fd) ;

c[sz] = '\0';

printf ("Those bytes are as
follows: %s\n", c);

Copyright ©: University of Illinois CS 241 Staff

i = lseek(fd, 0, SEEK CUR);

printf ("lseek (%d, 0, SEEK CUR)
returns that the current
offset is %d\n\n", £d4d, 1i);

printf ("now, we seek to the
beginning of the file and
call read(%d, c, 10)\n",

)
|lseek(fd, O, SEEK SET);

sz = read(fd, c, 10);

c[sz] = '\0';

printf ("The read returns the
following bytes: %s\n", c);

s i

Stream Processing - £scanf ()

int scanf (const char *format, ...);
Read from the standard input stream stdin
o Stores read characters in buffer pointed to by s.

Return
o Number of successfully matched and assigned input items

o EOF on error

int fscanf (FILE *stream, const char *fmt, ...),
o Read from the named input stream
int sscanf (const char *s, const char *fmt, ...),

o Read from the string s

Copyright ©: University of Illinois CS 241 Staff 17]

Example: (scanf ())

Input: 56789 56a72

#include <stdio.h>
int main() {

int i;

float x;

char name[50];

What are 1, x, and name
after the call to
scanf ()?

scanf ("%2d%f %$[0123456789]", &i, &x, name) ;

Copyright ©: University of Illinois CS 241 Staff 18]

