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Announcements 

Finals approaching, know your times and conflicts 
•  Ours: Friday May 16,  8-11 am 
•  Inform us by Wed May 7 if you have to take a conflict exam (with 

justification) 
•  Review information TBA 

Honors section demos 
•  Email us your group’s availability by Sunday May 4 
•  Follow the specific instructions on Piazza 

!  https://piazza.com/class/ho7vaxphwq9283?cid=938 

MP Grading Round 2 
•  Formula:  score = max{ old,   new/2 } 



3 

Filesystems 

A filesystem provides a high-level application access to storage media 
•  Masks the details of low-level sector-based I/O operations 
•  Provides structured access to data (files and directories) 
•  Caches recently-accessed data in memory 

Most common general-purpose file systems 
•  Organized as a tree of directories and files 
•  Byte-oriented: may read and write files a byte at a time 
•  Alternate models exist 

!  (key, value) storage instead of hierarchy 
!  record-oriented files (like a data structure in a file) instead of a flat 

stream of bytes 

Versioning filesystems 
•  Keep track of older versions of files 
•  e.g., VMS filesystem: Could refer to specific file versions: foo.txt;1, 

foo.txt;2	
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Filesystem Operations 

Filesystems provide a standard interface to files and directories: 
•  Create a file or directory 
•  Delete a file or directory 
•  Open a file or directory – allows subsequent access 
•  Read, write, append to file contents 
•  Add or remove directory entries 
•  Close a file or directory – terminates access 

What other features do filesystems provide? 
•  Accounting and quotas – prevent your classmates from hogging the disks 
•  Backup – some filesystems have a “$HOME/.backup” containing automatic snapshots 
•  Indexing and search capabilities 
•  File versioning 
•  Encryption 
•  Automatic compression of infrequently-used files 
•  Caching in memory 

Should this functionality be part of the filesystem or built on top? 
•  Classic OS community debate: Where is the best place to put functionality? 
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Basic Filesystem Structures 

Every file and directory is represented by an inode 
•  Stands for “index node” 

Contains two kinds of information: 
•  1) Metadata describing the file's owner, access rights, etc. 
•  2) Location of the file's blocks on disk 

inode 



6 

Directories 

A directory is a special kind of file that contains a list of 
(filename, inode number) pairs 

•  These are the contents of the directory “file data” itself – NOT the 
directory's inode! 

•  Filenames (in UNIX) are not stored in the inode at all! 
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Finding a file 

Two open questions: 
•  How do we find the root directory (“ / ” on UNIX systems)? 
•  How do we get from an inode number to the location of the inode on 

disk? 
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Resolving “/etc/password” 

Start at root directory and walk down chain of inodes 

8 
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Locating inodes on disk 

All right, so directories tell us the inode number of a file. 
•  How the heck do we find the inode itself on disk? 

Basic idea: Top part of filesystem contains all of the inodes! 

 

 

 
•  inode number is just the “index” of the inode 
•  Easy to compute the block address of a given inode: 

!  block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size) 

•  This implies that a filesystem has a fixed number of potential inodes 
!  This number is generally set when the filesystem is created 

•  The superblock stores important metadata on filesystem layout, list of free 
blocks, etc. 
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Stupid directory tricks 

Directories map filenames to inode numbers. What does this imply? 

We can create multiple pointers to the same inode in different 
directories 

•  Or even the same directory with different filenames 

In UNIX this is called a “hard link” and can be done using “ln” 
!  bash$ ls -i /home/foo 
!  287663 /home/foo       (This is the inode number of “foo”) 
!  bash$ ln /home/foo /tmp/foo 
!  bash$ ls -i /home/foo /tmp/foo 
!  287663 /home/foo 
!  287663 /tmp/foo 

•  “/home/foo” and “/tmp/foo” now refer to the same file on disk 
•  Not a copy! You will always see identical data no matter which filename you 

use to read or write the file. 
•  Not the same as a “symbolic link”! That links one filename to another. 
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How should we organize blocks on a 
disk? 
Very simple policy: A file consists of 
linked blocks 

•  inode points to the first block of the 
file 

•  Each block points to the next block 
in the file (just a linked list on disk) 

!  What are the advantages and 
disadvantages?? 

Indexed files 
•  inode contains a list of block 

numbers containing the file 
•  Array is allocated when the file is 

created 
!  What are the advantages and 

disadvantages?? 
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Multilevel indexed files 

inode contains a list of 10-15 direct block pointers 
•  First few blocks of file can be referred to by the inode itself 

inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks 

•  Allows file to grow to be incredibly large!!! 
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Multilevel indexed files 



14 

File system caching 
Most filesystems cache significant amounts of disk in memory 

•  e.g., Linux tries to use all “free” physical memory as a giant cache 
•  Avoids huge overhead for going to disk for every I/O 
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Caching issues (2) 
Reliability issues 

•  What happens when you write to the cache but the system crashes? 
•  What if you update some of the blocks on disk but not others? 

!  Example: Update the inode on disk but not the data blocks? 
•  Write-through cache: All writes immediately sent to disk 
•  Write-back cache: Cache writes stored in memory until evicted (then written 

to disk) 
!  Tradeoffs? 

15 
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Caching issues (2) 
“Syncing” a filesystem writes back any dirty cache 
blocks to disk 

•  UNIX “sync” command achieves this. 
•  Can also use fsync() system call to sync any blocks for a given file. 

!  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to the 
disk! 

!  This is also complicated by memory caching on the disk itself. 

Crash recovery 
•  If system crashes before sync occurs, a tool like fsck checks the 

filesystem for errors 
•  Example: an inode pointing to a block that is marked as free in the 

free block list 
•  Another example: An inode with no directory entry pointing to it 

!  These usually get linked into a “lost+found” directory  
!  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching and fsync() example 

Running the copy example from last time, 
•  How fast is it the first time, vs. the second time you copy the same file? 
•  What happens if we fsync() after each iteration? 
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Caching issues (3) 
Read ahead 

•  Seek time dominates overhead of disk I/O 
•  So, would ideally like to read multiple blocks into memory when you 

have a cache miss 
!  Amortize the cost of the seek for multiple reads 

•  Useful if file data is laid out in contiguous blocks on disk 
!  Especially if the application is performing sequential access to the file 

18 
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Making filesystems resilient: 
RAID 
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RAID Motivation 
Speed of disks not matching other components 

•  Moore’s law: CPU speed doubles every 18 months 
•  SRAM speeds increasing by 40-100% a year 
•  In contrast, disk seek time only improving 7% a year 

!  Although greater density leads to improved transfer times once seek is done 

Emergence of PCs starting to drive down costs of disks 
•  (This is 1988 after all) 
•  PC-class disks were smaller, cheaper, and only marginally slower 

20 
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RAID Motivation 
Basic idea: Build I/O systems as arrays of cheap 
disks 

•  Allow data to be striped across multiple disks 
•  Means you can read/write multiple disks in parallel – 

greatly improve performance 

Problem: disks are extremely unreliable 

Mean Time to Failure (MTTF) 
•  MTTF (disk array) = MTTF (single disk) / # disks 
•  Adding more disks means that failures happen more 

frequently.. 
•  An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks for the array’s MTTF! 
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Increasing reliability 
Idea: Replicate data across multiple disks 

•  When a disk fails, lost information can be regenerated from the 
redundant data 

Simplest form: Mirroring (also called “RAID 1”) 
•  All data is mirrored across two disks 

Advantages: 
•  Reads are faster, since both disks can be read in parallel 
•  Higher reliability (of course) 

Disadvantages: 
•  Writes are slightly slower, since OS must wait for both disks to do 

write 
•  Doubles the cost of the storage system! 
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RAID 3 
Rather than mirroring, use parity codes 

•  Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an even 
number of “1” bits in the set {b1, b2, ..., bN, P} 

•  Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P) to 
recover it. 

Where to store the parity codes? 
•  Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N disks 

Advantages:  
•  If a single disk fails, can easily recompute the lost data from the parity code 
•  Can use one parity disk for several data disks (reduces cost) 

Disadvantages: 
•  Each write to a block must update the corresponding parity block as well 
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RAID 3 example 



25 

RAID 3 example 
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RAID 3 example 
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RAID 3 example 

1. Read back data from other disks 

2. Recalculate lost data from parity code 

3. Rebuild data on lost disk 
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RAID 3 issues 

Terminology 
•  MTTF = mean time to failure 
•  MTTR = mean time to repair 

What is the MTTF of RAID? 
•  Both RAID 1 and RAID 3 tolerate the failure of a single disk 
•  As long as a second disk does not die while we are repairing the first failure, we are in 

good shape! 

So, what is the probability of a second disk failure? 

P(2nd failure) ≈ MTTR / (MTTF of one disk  / # disks -1) 
!  Assumes independent, exponential failure rates; see Patterson RAID paper for derivation 

•  10 disks, MTTF (disk) = 1000 days, MTTR = 1 day 
!  P(2nd failure) ≈ 1 day / ( 1000 / 9 ) = 0.009 

What is the performance of RAID 3? 
•  Check disk must be updated each time there is a write 
•  Problem: The check disk is then a performance bottleneck 

!  Only a single read/write can be done at once on the whole system! 
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RAID 5 
Another approach: Interleaved check blocks (“RAID 5”) 

•  Rotate the assignment of data blocks and check blocks across disks 
•  Avoids the bottleneck of a single disk for storing check data 
•  Allows multiple reads/writes to occur in parallel (since different disks 

affected) 
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Reliable distributed storage 

Today, giant data stores distributed across 100s of thousands 
of disks across the world 

•  e.g., your mail on gmail 

 

“You know you have a large storage system when you get paged at 
1 AM because you only have a few petabytes of storage left.” 

•  – a “note from the trenches” at Google 
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Reliable distributed storage 

Issues 
•  Failure is the common case 

!  Google reports 2-10% of disks fail per year 
!  Now multiply that by 60,000+ disks in a single warehouse... 

•  Must survive failure of not just a disk, but a rack of servers or a whole 
data center 

Solutions 
•  Simple redundancy (2 or 3 copies of each file) 

!  e.g., Google GFS (2001) 
•  More efficient redundancy (analogous to RAID 3++) 

!  e.g., Google Colossus filesystem (~2010): customizable replication 
including Reed-Solomon codes with 1.5x redundancy 

More interesting tidbits: http://goo.gl/LwFIy 
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Caching issues 
Where should the cache go? 

•  Below the filesystem layer: Cache individual disk blocks 
•  Above the filesystem layer: Cache entire files and directories 
•  Which is better?? 
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