
1

Networking wrap-up and
I/O systems

CS 241

April 28, 2014

University of Illinois

2

Today

Network programming tips

Network Address Translation

I/O systems

3

Tip #1: Can’t bind?

Problem: bind() says “address already in use”
•  You have stopped your server, and then re-started it right away
•  The sockets that were used by the first incarnation of the server are still

active

4

setsockopt

int yes = 1;	

setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, 	

 (char *) &yes, sizeof (yes));	
•  Call just before bind()
•  Allows bind to succeed despite the existence of existing connections in

the requested TCP port
•  Connections in limbo (e.g. lost final ACK) will cause bind to fail

5

Tip #2: Dealing with abruptly closed
connection

6

Tip #2: Dealing with abruptly closed
connection
Problem: Socket at other end is closed

•  Write to your end generates SIGPIPE	
•  This signal kills the program by default!

signal (SIGPIPE, SIG_IGN);	
•  Call at start of main in server
•  Allows you to ignore broken pipe signals
•  Can ignore or install a proper signal handler
•  Default handler exits (terminates process)

7

Tip #3: Beej’s guide

Beej's Guide to Network Programming

http://beej.us/guide/bgnet/	

8

Review

9

Threads in your web server

Why are multiple threads useful in your web server – as
opposed to serving all clients with a single thread in a single
process? (Check all that apply)

•  Multiple threads can spread work across multiple cores / CPUs to
decrease processing time.

•  Multiple threads have greater memory space to read files and write
them to the network.

•  A single thread would have to switch back and forth between each
connection, which is slow and annoying to program.

•  One thread can be reading/writing from the network while another is
waiting to read a file off disk.

10

DNS caching

Why does the DNS system use caching? (Check all that apply)

•  Returns more up-to-date results

•  Improves speed of response

•  Decreases workload on root and authoritative DNS servers

•  Improves security

•  Improves robustness (things still work even if some DNS servers fail)

11

Network Address Translation
(NAT)

12

The problem

Your ISP gives you one IP address. But...

13

NAT: Network Address Translation

Approach
•  Assign one router a global IP address
•  Assign internal hosts local IP addresses
•  A box in the middle converts between them

!  (e.g. wireless router in your home)

When a packet arrives from the Internet, how do you know
which internal host it’s destined for?

14

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80 2

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001

3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

15

NAT: Benefits

Local network uses just one (or a few) IP address as far as
outside world is concerned

•  No need to be allocated range of addresses from ISP
!  16-bit port-number field: 60,000 simultaneous connections with a

single LAN-side address!
!  Might use a few IPs in a large private enterprise network

•  Can change addresses of devices in local network without notifying
outside world

•  Can change ISP without changing addresses of devices in local network

Security
•  Devices inside local net not explicitly addressable by outside world
•  Connection needs to be initiated by inside device before a specific host

can reach it from the public Internet

16

NAT example use: load balancing

Load balancing
•  Balance the load on a set of identical servers, which are accessible from

a single IP address

NAT solution
•  Servers are assigned private addresses
•  NAT acts as a proxy for requests to the server from the public network
•  NAT changes the destination IP address of arriving packets to one of

the private addresses for a server
•  Balances load on the servers by assigning addresses in a round-robin

fashion

17

NAT: Consequences

End-to-end connectivity broken
•  NAT destroys universal end-to-end reachability of hosts on the Internet
•  A host in the public Internet often cannot initiate communication to a

host in a private network
•  Even worse when two hosts that are in different private networks need

to communicate with each other

18

NAT: Consequences

Broken if IP address in application data
•  Applications often carry IP addresses in the payload of the application

data
•  No longer work across a private-public network boundary
•  Hack: Some NAT devices inspect the payload of widely used application

layer protocols and, if an IP address is detected in the application-layer
header or the application payload, translate the address according to the
address translation table

19

NAT: Consequences

Ossification of Internet protocols
•  NAT must be aware of port numbers which are inside transport header
•  Existing NATs don’t support your fancy new transport protocol

!  and might even block standard protocols like UDP
•  Result: Difficult to invent new transport protocols

!  ...unless they just pretend to be TCP

20

I/O systems

21

Input and Output

A computer’s job is to process data
•  Computation (CPU, cache, and memory)
•  Move data into and out of a system (between I/O devices and memory)

Challenges with I/O devices
•  Different categories: storage, networking, displays, etc.
•  Large number of device drivers to support
•  Device drivers run in kernel mode and can crash systems

Goals of the OS
•  Provide a generic, consistent, convenient and reliable way to access I/O

devices
•  As device-independent as possible
•  High performance I/O

22

How does the CPU talk to devices?

Device controller: Hardware that enables devices to talk to the
peripheral bus

Host adapter: Hardware that enables the computer to talk to the
peripheral bus

Bus: Wires that transfer data between components inside computer

Device controller allows OS to specify simpler instructions to access
data

Example: a disk controller
•  Translates “access sector 23” to “move head reader 1.672725272 cm from

edge of platter”
•  Disk controller “advertises” disk parameters to OS, hides internal disk

geometry
•  Most modern hard drives have disk controller embedded as a chip on the

physical device

23

Review: Computer Architecture

Compute hardware
•  CPU and caches
•  Chipset
•  Memory

I/O Hardware
•  I/O bus or interconnect
•  I/O controller or adaptor
•  I/O device

Two types of I/O
•  Programmed I/O (PIO)

!  CPU does the work of moving data
•  Direct Memory Access (DMA)

!  CPU offloads the work of moving data to DMA controller

24

Programmed Input Device

Device controller
•  Status registers

!  ready: tells if the host is done
!  busy: tells if the controller is done
!  int: interrupt
!  …

•  Data registers

A simple mouse design
•  When moved, put (X, Y) in mouse’s device

controller’s data registers
•  Interrupt CPU

Input on an interrupt
•  CPU saves state of currently-executing

program
•  Reads values in X, Y registers
•  Sets ready bit
•  Wakes up a process/thread or execute a piece

of code to handle interrupt

25

Programmed Output Device

Device
•  Status registers (ready, busy, …)
•  Data registers

Example
•  A serial output device

Perform an output
•  CPU: Poll the busy bit
•  Writes the data to data register(s)
•  Set ready bit
•  Controller sets busy bit and transfers

data
•  Controller clears the busy bit

26

Direct Memory Access (DMA)

DMA controller or adaptor
•  Status register (ready, busy, interrupt, …)
•  DMA command register
•  DMA register (address, size)
•  DMA buffer

Host CPU initiates DMA
•  Device driver call (kernel mode)
•  Wait until DMA device is free
•  Initiate a DMA transaction (command, memory

address, size)
•  Block

Controller performs DMA
•  DMA data to device (size--; address++)
•  Issue interrupt on completion (size == 0)

CPU’s interrupt handler
•  Wakeup the blocked process

27

Memory-mapped I/O

Use the same address bus to address both memory and I/O
devices

•  The memory and registers of I/O devices are mapped to address values
•  Allows same CPU instructions to be used with regular memory and

devices

I/O devices, memory controller, monitor address bus
•  Each responds to addresses they own

Orthogonal to DMA
•  May be used with, or without, DMA

28

Polling- vs. Interrupt-driven I/O

Polling
•  CPU issues I/O command
•  CPU directly writes instructions into device’s registers
•  CPU busy waits for completion

Interrupt-driven I/O
•  CPU issues I/O command
•  CPU directly writes instructions into device’s registers
•  CPU continues operation until interrupt

Direct Memory Access (DMA)
•  Typically done with Interrupt-driven I/O
•  CPU asks DMA controller to perform device-to-memory transfer
•  DMA issues I/O command and transfers new item into memory
•  CPU module is interrupted after completion

Which is better, polling or interrupt-driven I/O?

29

Polling- vs. Interrupt-driven I/O

Polling
•  Expensive for large transfers
•  Better for small, dedicated systems with infrequent I/O

Interrupt-driven
•  Overcomes CPU busy waiting
•  I/O module interrupts when ready: event driven

30

How Interrupts are implemented

CPU hardware has an interrupt report line that the CPU tests
after executing every instruction

•  If a(ny) device raises an interrupt by setting interrupt report line
!  CPU catches the interrupt and saves the state of current running

process into PCB
!  CPU dispatches/starts the interrupt handler
!  Interrupt handler determines cause, services the device and clears

the interrupt report line

Other uses of interrupts: exceptions
•  Division by zero, wrong address
•  System calls (software interrupts/signals, trap)
•  Virtual memory paging

31

I/O Software Stack

Kernel

User space

32

Announcements

MPs, Take Two
•  May resubmit, after MP7 due date and before final
•  Half credit on resubmissions
•  Watch Piazza later this week for grading and timing details

Talk today
•  Scott Shenker (UC Berkeley)
•  “Software-Defined Networking: Introduction and Retrospective”

