Networking wrap-up and
I/O systems

CS 241
April 28, 2014

University of lllinois

Today

Network programming tips
Network Address Translation

/O systems

Tip #1: Can't bind?

Problem: bind() says ‘“address already in use”

* You have stopped your server, and then re-started it right away

* The sockets that were used by the first incarnation of the server are still
active

1nt yes = 1;
setsockopt (fd, SOL_SOCKET, SO_REUSEADDR,

(char *) &yes, sizeof (yes));
* Call just before bind()

* Allows bind to succeed despite the existence of existing connections in
the requested TCP port

* Connections in limbo (e.g. lost final ACK) will cause bind to falil

Tip #2: Dealing with abruptly closed
connection

Tip #2: Dealing with abruptly closed
connection

Problem: Socket at other end is closed

* Write to your end generates SIGPIPE
* This signal kills the program by default!

signal (SIGPIPE, SIG_IGN);

* Call at start of main in server
* Allows you to ignore broken pipe signals
* Can ignore or install a proper signal handler

* Default handler exits (terminates process)

Tip #3: Beej's guide

Beej's Guide to Network Programming

http://beej.us/guide/bgnet/

Review

Why are multiple threads useful in your web server — as
opposed to serving all clients with a single thread in a single
process! (Check all that apply)

* Multiple threads can spread work across multiple cores / CPUs to
decrease processing time.

* Multiple threads have greater memory space to read files and write
them to the network.

* A single thread would have to switch back and forth between each
connection, which is slow and annoying to program.

* One thread can be reading/writing from the network while another is
waiting to read a file off disk.

DNS caching

Why does the DNS system use caching? (Check all that apply)

* Returns more up-to-date results

Improves speed of response

Decreases workload on root and authoritative DNS servers

Improves security

Improves robustness (things still work even if some DNS servers fail)

Network Address Translation
(NAT)

The problem

Your ISP gives you one IP address. But...

NAT: Network Address Translation

Approach
* Assign one router a global IP address
* Assign internal hosts local IP addresses
* A box in the middle converts between them

= (e.g. wireless router in your home)

When a packet arrives from the Internet, how do you know
which internal host it’s destined for?

NAT: Network Address Translation

NAT translation table

2: NAT router WAN side addr |LAN side addr :—e :j:t d;&gfi'rL -
changes datagram 138.76.29.7,5001 |10.0.0.1, 3345 128.119.40. 80
source addr from | ’
10.0.0.1, 3345 to D

138.76.29.7, 5001,
updates table

S:10.0.0.1, 3345
D: 128.119.40.186, 80

S:138.76.29.7,5001 ﬁ
D: 128.119.40.186, 80

138.76.29.7 " 5:128.119.40.186,80 _@_

I | D:10.0.0.1, 3345

[S: 128.119.40.186, 80 @ /
D: 138.76.29.7, 5001

I : 4: NAT router

3: Reply arrives

; o changes datagram
est. address: dest addr from

138.76.29.7, 5001 138.76.29.7, 5001 to 10.0.0.1,3345

L0.0.0.4

Local network uses just one (or a few) IP address as far as
outside world is concerned

* No need to be allocated range of addresses from ISP

= | 6-bit port-number field: 60,000 simultaneous connections with a
single LAN-side address!

= Might use a few IPs in a large private enterprise network

* Can change addresses of devices in local network without notifying
outside world

* Can change ISP without changing addresses of devices in local network

Security
* Devices inside local net not explicitly addressable by outside world

* Connection needs to be initiated by inside device before a specific host
can reach it from the public Internet

NAT example use: load balancing

Load balancing

* Balance the load on a set of identical servers, which are accessible from
a single IP address

NAT solution

* Servers are assigned private addresses
* NAT acts as a proxy for requests to the server from the public network

* NAT changes the destination IP address of arriving packets to one of
the private addresses for a server

* Balances load on the servers by assigning addresses in a round-robin
fashion

NAT: Consequences

End-to-end connectivity broken
* NAT destroys universal end-to-end reachability of hosts on the Internet
* A host in the public Internet often cannot initiate communication to a
host in a private network

* Even worse when two hosts that are in different private networks need
to communicate with each other

NAT: Consequences

Broken if IP address in application data

* Applications often carry IP addresses in the payload of the application
data

* No longer work across a private-public network boundary

* Hack: Some NAT devices inspect the payload of widely used application
layer protocols and, if an IP address is detected in the application-layer

header or the application payload, translate the address according to the
address translation table

NAT: Consequences

Ossification of Internet protocols
* NAT must be aware of port numbers which are inside transport header
* Existing NATs don’t support your fancy new transport protocol
= and might even block standard protocols like UDP
* Result: Difficult to invent new transport protocols

= ..unless they just pretend to be TCP

I/O systems

A computer’s job is to process data

* Computation (CPU, cache, and memory)
* Move data into and out of a system (between I/O devices and memory)

Challenges with I/O devices
* Different categories: storage, networking, displays, etc.
* Large number of device drivers to support

* Device drivers run in kernel mode and can crash systems

Goals of the OS

* Provide a generic, consistent, convenient and reliable way to access I/O
devices

* As device-independent as possible

* High performance I/O

21

How does the CPU talk to devices?

Device controller: Hardware that enables devices to talk to the
peripheral bus

Host adapter: Hardware that enables the computer to talk to the
peripheral bus

Bus: Wires that transfer data between components inside computer

Device controller allows OS to specify simpler instructions to access
data

Example: a disk controller

* Translates “access sector 23” to “move head reader |1.672725272 cm from
edge of platter”

* Disk controller “advertises” disk parameters to OS, hides internal disk
geometry

* Most modern hard drives have disk controller embedded as a chip on the
physical device

22

Review: Computer Architecture

Compute hardware
* CPU and caches
* Chipset
* Memory

/O Hardware

* |/O bus or interconnect
* 1/O controller or adaptor
* |/O device

Two types of I/O
* Programmed I/O (PIO)

CPU

Memory

I/0 bus

= CPU does the work of moving data

* Direct Memory Access (DMA)

=

= CPU offloads the work of moving data to DMA controller

23

Programmed Input Device

Device controller

* Status registers
= ready: tells if the host is done
= busy: tells if the controller is done
* int: interrupt

* Data registers

A simple mouse design

* When moved, put (X, Y) in mouse’s device
controller’s data registers

* Interrupt CPU

Input on an interrupt

* CPU saves state of currently-executing
program

* Reads values in X, Y registers
* Sets ready bit

* Wakes up a process/thread or execute a piece
of code to handle interrupt

CPU

Memory

p—

-~ C ontroller

/O bus

rdy

busy | int

Data (x)

Data (y)

=

24

Programmed Output Device

Device

* Status registers (ready, busy, ...)

Data registers

Example

A serial output device

Perform an output

CPU: Poll the busy bit
Writes the data to data register(s)
Set ready bit

Controller sets busy bit and transfers
data

Controller clears the busy bit

CPU
$

Memory

| Serial

/| controller

rdy |busy|int | ...

Data
Data

1/O bus

25

Direct Memory Access (DMA)

DMA controller or adaptor
* Status register (ready, busy, interrupt, ...)
* DMA command register

DMA register (address, size)

DMA buffer

Host CPU initiates DMA
* Device driver call (kernel mode)
* Wit until DMA device is free

* Initiate a DMA transaction (command, memory
address, size)

* Block

Controller performs DMA
* DMA data to device (size--; address++)
* Issue interrupt on completion (size == 0)

CPU’s interrupt handler
* Wakeup the blocked process

CPU

Memory

/O bus

rdy |busy| int

" 1 Adaptor

DMA command

address size

Buffer

26

Memory-mapped I/O

Use the same address bus to address both memory and I/O
devices

* The memory and registers of I/O devices are mapped to address values

* Allows same CPU instructions to be used with regular memory and
devices

/O devices, memory controller, monitor address bus

* Each responds to addresses they own

Orthogonal to DMA
* May be used with, or without, DMA

27

Polling- vs. Interrupt-driven 1/0O

Polling
* CPU issues I/O command
* CPU directly writes instructions into device’s registers
* CPU busy waits for completion

Interrupt-driven |/O
* CPU issues I/O command
* CPU directly writes instructions into device’s registers
* CPU continues operation until interrupt

Direct Memory Access (DMA)

* Typically done with Interrupt-driven 1/O

* CPU asks DMA controller to perform device-to-memory transfer
* DMA issues /O command and transfers new item into memory

* CPU module is interrupted after completion

Which is better, polling or interrupt-driven 1/O?

28

Polling- vs. Interrupt-driven 1/0O

Polling

* Expensive for large transfers
* Better for small, dedicated systems with infrequent 1/O

Interrupt-driven
* Overcomes CPU busy waiting

* 1/O module interrupts when ready: event driven

29

How Interrupts are implemented

CPU hardware has an interrupt report line that the CPU tests
after executing every instruction

* If a(ny) device raises an interrupt by setting interrupt report line

= CPU catches the interrupt and saves the state of current running
process into PCB

= CPU dispatches/starts the interrupt handler

= Interrupt handler determines cause, services the device and clears
the interrupt report line

Other uses of interrupts: exceptions
* Division by zero, wrong address

* System calls (software interrupts/signals, trap)
* Virtual memory paging

30

I/O Software Stack

User space

Kernel

User-Level I/0O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

31

Announcements

MPs, Take Two

* May resubmit, after MP7 due date and before final
* Half credit on resubmissions

* Watch Piazza later this week for grading and timing details

Talk today
* Scott Shenker (UC Berkeley)

* “Software-Defined Networking: Introduction and Retrospective”

2]

IS PRIME

DONALD B. GILLIES LECTURE
IN COMPUTER SCIENCE

32

