
1

HTTP

CS 241

April 23, 2014

University of Illinois

2

Announcements

Brighten out of town Friday
•  Guest lecture: Ankit Singla
•  DNS and networking research

MP6 due today, MP7 out today

3

Onward to Applications

All networked applications use “application
layer” protocols to communicate

Examples
•  HTTP
•  FTP
•  SMTP
•  IMAP
•  Telnet
•  SSH
•  …

Physical

Data Link

Network

Transport

Application

4

Web page structure

Web pages consist of
•  Objects

!  HTML files, JPEG images, Java applets, audio files,…
•  Base HTML file

!  Includes several referenced objects (How many on a typical modern
site?)

Each object is addressable by a URL

Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

5

HTTP (Hypertext Transfer Protocol)

Web’s application layer
protocol

Client/server model
•  Client

!  Browser that requests,
receives, “displays” Web
objects

•  Server
!  Web server sends objects

in response to requests

PC running
Firefox

Server
running

Apache Web
server

Mac running
Chrome

6

HTTP

Uses TCP

Basic steps
•  Client initiates TCP connection (creates socket) to server, port 80
•  Server accepts TCP connection from client
•  HTTP messages (application-layer protocol messages) exchanged

between browser (HTTP client) and Web server (HTTP server)
•  TCP connection closed

HTTP is stateless
•  Server need not maintain information about past client requests

7

HTTP Request Message

Two types of HTTP messages: request, response
•  ASCII (human-readable format)

HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

 (extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

8

Method Types

HTTP/1.0
•  GET
•  POST
•  HEAD

!  Asks server to leave
requested object out
of response

HTTP/1.1
•  GET, POST, HEAD
•  PUT

!  Uploads file in entity
body to path specified
in URL field

•  DELETE
!  Deletes file specified in

the URL field

9

HTTP Request Message: General
Format

method sp URL sp version cr lf
header field name : value cr lf
header field name : value cr lf

header field name : value cr lf
…

cr lf

entity body

Request
line

Header
lines

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

10

Uploading Form Input

Post method
•  Web page often includes form of input
•  Input is uploaded to server in entity body

URL method
•  Uses GET method
•  Input is uploaded in URL field of request line:

!  www.somesite.com/animalsearch?monkeys&banana

11

HTTP Response Message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 2013 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

12

HTTP response status codes

In first line in server->client response message

A few sample codes:

200 OK request succeeded, requested object later in this

message

301 Moved
Permanently

requested object moved, new location specified
later in this message (Location:), client
automatically retrieves new URL

400 Bad Request request message not understood by server

404 Not Found requested document not found on this server

505 HTTP Version
Not Supported

13

HTTP response status codes

In first line in server->client response message

A few sample codes

More in the illustrated guide...
•  http://tinyurl.com/cvyepwt

14

Trying out HTTP (client side) For
Yourself

1. Telnet to your favorite Web server

telnet courses.engr.illinois.edu 80

2. Type in a GET HTTP request
GET /class/sp12/cs241/index.html
HTTP/1.0

3. Look at response message sent by
HTTP server!

Opens TCP connection to port 80
(default HTTP server port) at
www.cs.illinois.edu.
Anything typed in sent
to port 80 at cs.illinois.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

15

User-server State: Cookies

Many major Web sites use
cookies

Four components
1.  Cookie header line of

HTTP response message
2.  Cookie header line in

HTTP request message
3.  Cookie file kept on user’s

host, managed by user’s
browser

4.  Back-end database at
Web site

Example
•  Alice always accesses

Internet from PC
•  Visits specific e-

commerce site for first
time

•  When initial HTTP
requests arrives at site,
site creates:

!  unique ID
!  entry in backend

database for ID

16

Cookies

What cookies can bring
•  Authorization
•  Shopping carts
•  Recommendations
•  User session state (Web e-

mail)

How to keep “state”
•  Protocol endpoints: maintain

state at sender/receiver over
multiple transactions

•  cookies: http messages carry
state

Cookies and privacy
•  Cookies permit sites

to learn a lot about
you

•  You may supply
name and e-mail to
sites

17

Cookies: Keeping “State”

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

18

Optimizing HTTP

19

How long does it take?
Consider loading a website:

•  You request a single HTML page
•  The HTML page contains 5 images
•  (Since the HTML page contains the 5 images, you don’t know about

them before you receive the images.)

Q: how long would it take to completely load the webpage
given:

•  You have to make a new connection for every requested object,
 and

•  You can only have one active connection at any time
 and

•  The actual HTML and images are very small in size ... but the round
trip time (RTT) is reasonably large

20

HTTP step by step

24

Optimizing HTTP
In HTTP, the Connection header requests the server to
keep the TCP connection active, or persistent.

•  Connection: keep-alive
•  Connection: close

Using Connection: keep-alive, how many RTTs
would it take to load the same website?

25

Response time for
whole web page

Nonpersistent HTTP
•  Requires 2 RTTs per

object plus file
transmission time

•  Plus, OS overhead for
each TCP connection

Persistent HTTP
•  Server leaves TCP

connection open after
sending response

•  Subsequent HTTP
messages between
same client/server sent
over same open
connection

26

Optimizing HTTP

Nearly all modern browsers make at least 2 connections to
every web server. This allows for requests to be made in
parallel.

Using Connection: keep-alive and three parallel connections,
how many RTTs would it take to load the same website?

27

Optimizing HTTP

In HTTP/1.1, a new feature called HTTP Pipelining allowed
multiple requests to be made in one header.

•  Request all five images at once!

Using Connection: keep-alive, HTTP pipelining, and only one
connection, how many RTTs would it take to load the same
website?

28

Aside:
Do a few RTTs matter?

Collective experiment

ping your_favorite_domain.foo	

29

MP8 Overview
Goal: Build a simple HTTP web server.

Your “MP8 Server” Firefox

Chrome

wget

Web Browsers

