
1

Networking: Using Sockets

CS 241

April 21, 2014

University of Illinois

2

TCP vs UDP
TCP

•  Reliable Delivery
•  Flow Control
•  Slower / More Overhead

•  Requires a 3-way handshake on
connect

•  Ideal for applications where data
integrity is critical.

•  UDP
–  Fast / Low Overhead
–  No delivery guarantees

–  “Connectionless”: no setup required

–  Ideal for applications where speed is
most important.

…and both provide port numbers.

3

Creating a TCP session

server client

Server:
•  Creates a socket to listen for incoming connections.
•  Must listen on a specific protocol/port.

TCP/80

4

Creating a TCP session

server client

Client:
•  Creates a socket to connect to a remote computer.

TCP/80

5

Creating a TCP session

server client

Client:
•  Requests a connection to TCP port 80 on 74.125.225.70.

TCP/80

6

Creating a TCP session

server client

Server:
•  Accepts the connection.

TCP/80

7

Creating a TCP session

server client

Server:
•  Spawns a new socket to communicate directly with the newly

connected client.
•  Allows other clients to connect.

TCP/80

Two way
communications

8

Creating a network socket (client and
server)
socket(): Create an endpoint for communication

int socket(int network_protocol,
 int transport_protocol,
 int sub_protocol)

 IP: AF_INET IPv6: AF_INET6
 TCP: SOCK_STREAM UDP: SOCK_DGRAM

9

Setting up a server socket

getaddrinfo(): network address translation
•  Translates a hostname (IP address or domain name), port, and protocol

into a socket address struct.

bind(): binds an socket address to a socket
•  Required in order to know what port number your socket will be

listening for new connections

listen(): places the socket in a listening state

accept(): accept a communication on a socket
•  int accept(int sockfd,  

 struct sockaddr *addr,  
 socklen_t *addrlen);	

10

Setting up a client socket

getaddrinfo(): network address translation (as before)

connect(): initiate a connection on a socket
•  int connect(int sockfd,  

 struct sockaddr *addr,  
 socklen_t *addrlen);	

11

Behind the scenes in connect()
When a client connects to a host on TCP, a “TCP session”
is initiated.

•  Requires a three-way handshake before any data can be sent on the
TCP socket.

Client Server

12

HTTP:
Hypertext Transfer Protocol

13

HTTP Request
Sent from a client (eg: web browser) to a server.

GET /index.html HTTP/1.1

Host: linux4.ews.illinois.edu

User-Agent: Mozilla/5.0 (Windows NT[...]

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

14

Network Frame
In networking, you must identify when a packet ends.

•  Network frame: The region of data that consists of one request for
a given protocol.

In HTTP:
•  Header: Always ends with \r\n\r\n
•  Body: If a body exists, the header will always specify a Content-
Length field that specifies the number of bytes in the body

15

HTTP Response
Sent in response to an HTTP request.

GET /cs241/ HTTP/1.1

Content-Length: 23774

Content-Type: text/html

Server: Microsoft-IIS/7.5

Set-Cookie: ASPSESSIONIDAEEESRAB=PN[...]

X—Powered-By: ASP.NET

Date: Fri, 15 Nov 2013[...]

Connection: close

[23.22 KB of HTML]

16

Optimizing HTTP
Consider loading a website:

•  You request a single HTML page
•  The HTML page contains 5 images
•  (Since the HTML page contains the 5 images, you don’t know about

them before you receive the images.)

In terms of RTTs (assume it takes no time to transmit the
actual data), how long would it take to completely load the
webpage given:

•  You had to make a new connection for every request,
 and

•  You can only have one active connection at any time

17

Optimizing HTTP

18

Optimizing HTTP
In HTTP, the Connection header requests the server to
keep the TCP connection active.

•  Connection: keep-alive
•  Connection: close

Using Connection: keep-alive, how many RTTs
would it take to load the same website?

19

Optimizing HTTP

20

Optimizing HTTP
Nearly all modern browsers make at least 2 connections to
every web server. This allows for requests to be made in
parallel.

Using Connection: keep-alive and three (3)
parallel connections, how many RTTs would it take to load
the same website?

21

Optimizing HTTP

22

Optimizing HTTP
In HTTP/1.1, a new feature called HTTP Pipelining allows
multiple requests to be made in one header.

•  Request all five images at once!

Using Connection: keep-alive, HTTP pipelining,
and only one connection, how many RTTs would it take to
load the same website?

23

Optimizing HTTP

