
1

Signals In Depth

CS 241

April 14, 2014

University of Illinois

2

Announcements

Pebble pickup for those who didn’t already
•  Right after class today

3

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

4

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

5

Generating a signal

Generated by a process with syscall kill(pid, signal)	
•  Sends signal to process pid	
•  Poorly named: sends any signal, not just SIGKILL

Generated by the kernel, when...
•  a child process exits or is stops (SIGCHLD)
•  floating point exception, e.g. div. by zero (SIGFPE)
•  bad memory access (SIGSEGV)
•  ...

6

Signals from the command line: kill

kill -l 	
•  Lists the signals the system understands

kill [-signal] pid 	
•  Sends signal to the process with ID pid	
•  Optional argument signal may be a name or a number (default is

SIGTERM)

kill -9 pid or
kill -KILL pid or
kill -SIGKILL pid	

•  Unconditionally terminates process pid	

7

Signals in the interactive terminal

Control-C is SIGINT
•  Interactive attention signal

Control-Z is SIGSTOP
•  Execution stopped – cannot be ignored

Control-Y is SIGCONT
•  Execution continued if stopped

Control-\ is SIGQUIT
•  Interactive termination: core dump

8

A program can signal itself

Similar to raising an exception
•  raise(signal) or
•  kill(getpid(), signal)	

Or can signal after a delay
•  unsigned alarm(unsigned seconds);	
•  Calls are not stacked

!  any previously set alarm() is cancelled
•  alarm(20)

!  Send SIGALRM to calling process after 20 seconds
•  alarm(0)	

!  cancels current alarm

9

Example: What does this do?

Example of program signaling itself

“Infinite” loop for 5 seconds

Then interrupted by alarm
•  Doesn’t matter that while loop is still looping
•  No signal handler set by program; default action: terminate

int main(void) {  
 alarm(5);  
 while(1);  
}

10

Morbid example

#include <stdlib.h>  
#include <signal.h>  
 
int main(int argc, char** argv) {  
 if (fork())  
 sleep(30);  
 else  
 kill(getppid(), SIGKILL);  
}  

What does this do?

11

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel state

3. Deliver
signal

12

Kernel state

A signal is related to a specific process

In the process’s PCB (process control block), kernel stores
•  Set of pending signals

!  Generated but not yet delivered
•  Set of blocked signals

!  Will stay pending
!  Delivered after unblocked (if ever)

•  An action for each signal type
!  How to deliver the signal

13

Kernel signaling procedure

When signal arrives
•  Set pending bit for this signal
•  Only one bit per signal type!
•  Wait until ready to be delivered (not blocked)

When ready to be delivered
•  Pick a pending, non-blocked signal and execute the associated action –

one of:
!  Ignore
!  Kill process
!  Execute signal handler specified by process

14

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel state

3. Deliver
signal

15

Delivering a signal

Kernel may handle it
•  Not delivered to target program at all!
•  SIGSTOP, SIGKILL
•  Target process can’t handle these
•  They are really messages to the kernel about a process, rather than

messages to a process

But for most signals, target process handles it (if it wants)

16

If process handles the signal...

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

17

Signal mask

Temporarily prevents select types of signals from being
delivered

•  Implemented as a bit array
•  Same as kernel’s representation of pending and blocked signals

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0

18

Signal mask example

Block all signals:

Instead of sigfillset, you might try:
•  sigemptyset
•  sigaddset
•  sigdelset
•  sigismember

sigset_t sigs;  
sigfillset(&sigs);  
sigprocmask(SIG_SETMASK, &sigs, NULL);

19

If it’s not masked, we handle it

Three ways to handle
•  Ignore it

!  Different than blocking!
•  Kill process
•  Run specified signal handler function

One of these is the default
•  Depends on signal type

Tell the kernel what we want to do: signal() or sigaction()	

20

sigaction

Changes the action taken by a process when it receives a
specific signal

Notes
•  signum is any valid signal except SIGKILL and SIGSTOP
•  If act is non-null, new action is installed from act	
•  If oldact is non-null, previous action is saved in oldact

#include <signal.h>  
 
int sigaction(int signum,	
 const struct sigaction * act,	
 struct sigaction * oldact);

21

Potentially unexpected behavior

Inside kernel, only one pending signal of each type at a time
•  If another arrives while first one still pending, second is lost

What’s an interesting thing that could happen during a signal
handler?

•  Another signal arrives!
•  Need to either

!  Write code that does not assume mutual exclusion, or
!  Block signals during signal handler (signal() and sigaction() can do

this for you)

22

How to catch without catching

Can wait for a signal
•  No longer an asynchronous event, so no handler!

First block all signals

Then call sigsuspend() or sigwait()	
•  Atomically unblocks signals and waits until signal occurs
•  Looks a lot like condition variables, eh?

!  cond_wait() unlocks mutex and waits till condition occurs

23

Puzzle:
Using signals to send

a stream of data

Or, How To Completely Abuse Signaling Functionality In Order To
illustrate potentially unexpected behavior in signals,
illustrate that in the end, everything’s just bits, and
pull off epic systems hackery

24

Puzzle

Can we support arbitrary communication between processes
using only signals?

How would we transmit one bit of information using signals?

How can we build from there into a stream of data?

25

Puzzle solution attempt

int main(int argc, char** argv) {  
 pid_t friend;  
 sigset_t signals_to_mask;  
 
 printf("I'm process %d. Who should I talk to? ", getpid());  
 scanf("%d", &friend);  
 
 if (!strcmp(argv[1], "read")) {  
 sigfillset(&signals_to_mask);  
 sigprocmask(SIG_SETMASK, &signals_to_mask, NULL);  
 while (1) {  
 putchar(recv_char());  
 fflush(stdout);  
 }  
 }  
 
 else  
 while (1)  
 send_char(friend, getchar());  
}  

R
eader

W
riter

26

Puzzle solution attempt

int main(int argc, char** argv) {  
 pid_t friend;  
 sigset_t signals_to_mask;  
 
 printf("I'm process %d. Who should I talk to? ", getpid());  
 scanf("%d", &friend);  
 
 if (!strcmp(argv[1], "read")) {  
 sigfillset(&signals_to_mask);  
 sigprocmask(SIG_SETMASK, &signals_to_mask, NULL);  
 while (1) {  
 putchar(recv_char());  
 fflush(stdout);  
 }  
 }  
 
 else  
 while (1)  
 send_char(friend, getchar());  
}  

Block signals so we can
use sigwait()

27

Puzzle solution attempt

int main(int argc, char** argv) {  
 pid_t friend;  
 sigset_t signals_to_mask;  
 
 printf("I'm process %d. Who should I talk to? ", getpid());  
 scanf("%d", &friend);  
 
 if (!strcmp(argv[1], "read")) {  
 sigfillset(&signals_to_mask);  
 sigprocmask(SIG_SETMASK, &signals_to_mask, NULL);  
 while (1) {  
 putchar(recv_char());  
 fflush(stdout);  
 }  
 }  
 
 else  
 while (1)  
 send_char(friend, getchar());  
}  

All the magic
happens in here

28

Solution attempt: sending

void send_bit(pid_t friend, int bit) {  
 int signal = bit ? SIGUSR2 : SIGUSR1;  
 kill(friend, signal);  
}  
	
void send_char(pid_t friend, char c) {  
 int i;  
 
 for (i = 0; i < 8; i++)  
 send_bit(friend, c & (1 << i));  
}  

If bit is one,
send SIGUSR2	

If bit is zero,
send SIGUSR1	

29

Solution attempt: receiving

int recv_bit() {  
 int sig;  
 
 sigset_t set;  
 sigemptyset(&set);  
 sigaddset(&set, SIGUSR1);  
 sigaddset(&set, SIGUSR2);  
	
 sigwait(&set, &sig);	
 
 return (sig == SIGUSR2) ? 1 : 0;  
}  
	
char recv_char() {  
 int i;  
 char c = 0;  
 for (i = 0; i < 8; i++)  
 c |= recv_bit() << i;  
 return c;  
}

Construct the set of signals
to wait for. Too bad it takes
4 lines of code just to say
“SIGUSR1 or SIGUSR2”!
Wait for either signal

Interpret received signal
SIGUSR2 as a 1	
SIGUSR1 as a 0	

30

Demo!

What happened?!
•  Need to type multiple characters to receive just one
•  Receiver is getting garbage

Why did this happen?
•  Kernel does not queue all signals: just keeps latest one of each type
•  No guarantee that signals received in order sent

How would you fix this?
•  See signal-v2

