
1

I/O Multiplexing,
Signals

CS 241

April 10, 2014

University of Illinois

2

epoll() example

see epoll.c

3

Signals

4

Signals

A signal is an asynchronous notification of an event
•  Asynchronous: could occur at any time
•  Interrupts receiving process; jumps to signal handler in that process
•  A (limited) menu of event types to pick from

What events could be asynchronous?
•  Email message arrives on my machine

!  Mailing agent (user) process should retrieve it
•  Invalid memory access

!  OS should inform scheduler to remove process from the processor
•  Alarm clock goes off

!  Process which sets the alarm should catch it
•  Program’s configuration file is modified

!  Program should reload its files

5

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

6

Signaling: Inside Process 2

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

7

Example: Catch SIGINT

see signal_handler.c

8

Some POSIX signals (see signal.h)

NAME Default Action Description  
SIGHUP terminate process terminal line hangup  
SIGINT terminate process interrupt program	
SIGQUIT create core image quit program  
SIGILL create core image illegal instruction  
SIGTRAP create core image trace trap  
SIGABRT create core image abort(3) call (formerly SIGIOT)  
SIGEMT create core image emulate instruction executed  
SIGFPE create core image floating-point exception	
SIGKILL terminate process kill program  
SIGBUS create core image bus error	
SIGSEGV create core image segmentation violation	
SIGSYS create core image non-existent system call invoked  
SIGPIPE terminate process write on a pipe with no reader  
SIGALRM terminate process real-time timer expired	
SIGTERM terminate process software termination signal  
SIGURG discard signal urgent condition present on socket  
SIGSTOP stop process stop (cannot be caught or ignored)  
SIGTSTP stop process stop signal generated from keyboard  
SIGCONT discard signal continue after stop

9

Some POSIX signals (see signal.h)

NAME Default Action Description  
SIGCHLD discard signal child status has changed  
SIGTTIN stop process background read attempted  
SIGTTOU stop process background write attempted  
SIGIO discard signal I/O is possible on a descriptor  
SIGXCPU terminate process cpu time limit exceeded  
SIGXFSZ terminate process file size limit exceeded  
SIGVTALRM terminate process virtual time alarm  
SIGPROF terminate process profiling timer alarm  
SIGWINCH discard signal Window size change  
SIGINFO discard signal status request from keyboard  
SIGUSR1 terminate process User defined signal 1	
SIGUSR2 terminate process User defined signal 2	
SIGWAKE start process Wake upon reaching end of long,	
 boring list of signals	

10

A little puzzle

Signals are a kind of interprocess communication

Q: Difference between signals and pipes or shared memory?

A:
•  Asynchronous notification
•  Doesn’t send a “message” as such; just a signal number
•  Puzzle: Then how could I do this.....?

Run demo

