
1

I/O Multiplexing

CS 241

April 9, 2014

University of Illinois

2

Announcements

mp5 due today

mp6 released today
•  MapReduce

3

Review: Interprocess communication

Shared address space
•  Shared memory
•  Memory mapped files

Via OS
•  Files
•  Pipes
•  FIFOs (named pipes): Review today
•  Signals: New today

4

SurveyMonkey

5

Review: FIFOs and dup()

How could we read from a FIFO as if it were stdin?

#include <stdio.h>  
#include <stdlib.h>  
#include <fcntl.h>  
 
int main(int argc, char** argv) {	
 mkfifo(argv[1], S_IRWXU | S_IRWXG | S_IRWXO);  
	
 int fifo = open(argv[1], O_RDONLY);  
	
 dup2(fifo, 0); /* 0 is the file descriptor of stdin */  
	
 char line[1024];  
 while (fgets(line, 1024, stdin))  
 printf("I got this: %s\n", line);  
}

pipestdin.c

6

I/O Multiplexing: epoll

7

Partition/aggregate pattern

Front end
web server

Back-end
database server

Back-end
database server

Back-end
database server

1. Partition

...

Front end
web server

Back-end
database server

Back-end
database server

Back-end
database server

2. Aggregate

...

8

I/O Multiplexing

By default: read() / fread() are blocking calls.
•  …if no data is available, the process will be moved to the BLOCKED

state until data is available.

In order to read() from multiple files in one thread at one
time, I/O multiplexing is required.

•  epoll(): monitor multiple file descriptors, waiting until one or more
of the file descriptors become “ready”.

9

epoll() Overview

Usage of epoll():
•  Create an epoll instance via epoll_create()	

•  Register each file descriptor to watch via epoll_ctl()	

•  Use epoll_wait() to block until an fd is ready

On Linux, epoll replaces both select() and poll()

10

epoll() Overview
epoll_ctl():

int epoll_ctl(int epfd, int op, int fd,
 struct epoll_event *event);

op: EPOLL_CTL_ADD: Add to the epoll set
 EPOLL_CTL_MOD: Modify the epoll set
 EPOLL_CTL_DEL: Delete from the epoll set

event:
 struct epoll_event {
 uint32_t events; /* Epoll events */
 epoll_data_t data; /* User data */
 };

 typedef union epoll_data {
 int fd;
 ... // ...other stuff we will not use.
 } epoll_data_t;

11

epoll() Example

0s:

1s:

2s:

3s:

Process 1
A

D

Process 2

B
C

12

epoll() Example (switch to code...)

