
1

Deadlock wrap-up

Interprocess Communication

CS 241

March 31, 2014

University of Illinois

2

Cheating vs. collaborating

Cheating
•  Copying code, pseudo-code, flow charts
•  Writing someone else’s code line by line

Not cheating
•  Discussing high-level approaches
•  Discussing MP requirements, C language, tools
•  Helping each other with debugging

Does this mean I can’t help my friend?
•  No, but don’t solve their problems for them

3

Deadlock Detection
& Recovery

4

Deadlock Detection

Goal: Check to see if a deadlock has occurred

Special case: Single resource per type
•  E.g., mutex locks (value is zero or one)
•  Check for cycles in the resource allocation graph

General case
•  E.g., semaphores, memory pages, ...
•  See book, p. 355 – 358

5

Dependencies between processes

Resource allocation
graph

Corresponding
process dependency

graph

6

Deadlock Recovery

Recovery idea: get rid of the cycles in
the process dependency graph

Options:
•  Kill all deadlocked processes
•  Kill one deadlocked process at a time

and release its resources
•  Steal one resource at a time
•  Roll back all or one of the processes to

a checkpoint that occurred before they
requested any resources, then continue
!  Difficult to prevent indefinite

postponement

7

Deadlock Recovery

Have to kill
one more

Resource allocation
graph

Corresponding
process dependency

graph

8

Deadlock Recovery

Only have
to kill one

Resource allocation
graph

Corresponding
process dependency

graph

9

Deadlock Recovery

How should we pick a process to kill?

We might consider...
•  process priority
•  current computation time and time to completion
•  amount of resources used by the process
•  amount of resources needed by the process to complete
•  the minimal set of processes we need to eliminate to break deadlock
•  is process interactive or batch?

10

Rollback instead of killing processes

Selecting a victim
•  Minimize cost of rollback (e.g., size of process’s memory)

Rollback
•  Return to some safe state
•  Restart process for that state
•  Note: Large, long computations are sometimes checkpointed for other

reasons (reliability) anyway

Challenge: Starvation
•  Same process may always be picked as victim
•  Fix: Include number of rollbacks in cost factor

11

Deadlock Summary

Deadlock: cycle of processes/threads each waiting for the next
•  Nasty timing-dependent bugs!

Detection & Recovery
•  Typically very expensive to kill / checkpoint processes

Avoidance: steer around deadlock
•  Requires knowledge of everything an application will request
•  Expensive to perform on each scheduling event

Prevention (ordered resources)
•  Imposes conservative rules on application that preclude deadlock
•  Application can do it; no special OS support

12

Deadlock Summary

Typical solution:
•  OS (Unix/Windows) do nothing (Ostrich Algorithm)
•  Application uses general-purpose deadlock prevention

Transaction systems (e.g., credit card processing) may use
detection/recovery/avoidance

13

Where we are in 241

C basics

Memory

Processes

Threads

Scheduling

Synchronization

Interprocess communication

Networking

Filesystems

14

Interprocess Communication

15

Interprocess Communciation

What is IPC?
•  Mechanisms to transfer data between processes

Why is it needed?
•  Not all important procedures can be easily built in a single

process

16

Interprocess Communication

" Cooperating processes
# Can affect or be affected by other processes, including sharing

data
"  Just like cooperating threads!

# Benefits
"  Information sharing
" Computation speedup
" Modularity
" Convenience

17

Interprocess Communication

Can you think of a common use of IPC?

Can you think of any large applications that use IPC?

18

Google Chrome architecture (figure
borrowed from Google)

Separate processes for
browser tabs to protect
the overall application
from bugs and glitches in
the rendering engine

Restricted access from
each rendering engine
process to others and to
the rest of the system ht

tp
s:/

/si
te

s.g
oo

gle
.co

m
/a

/ch
ro

m
ium

.o
rg

/d
ev

/d
ev

elo
pe

rs
/d

es
ign

-d
oc

um
en

ts/
m

ult
i-p

ro
ce

ss
-a

rc
hit

ec
tu

re

19

Google Chrome architecture (figure
borrowed from Google)

A named pipe is
allocated for each
renderer process for
communication with the
browser process

Pipes are used in
asynchronous mode to
ensure that neither end
is blocked waiting for
the other

ht
tp

s:/
/si

te
s.g

oo
gle

.co
m

/a
/ch

ro
m

ium
.o

rg
/d

ev
/d

ev
elo

pe
rs

/d
es

ign
-d

oc
um

en
ts/

m
ult

i-p
ro

ce
ss

-a
rc

hit
ec

tu
re

20

IPC Communications Model

Each process has a private address space

No process can write to another process’s space

How can we get data from process A to process B?

OS address
space

Process A Process B

Private
address
space

Private
address
space

21

Two kinds of IPC
“Mind meld” “Intermediary”

Process

OS

Process

Shared address space
•  Shared memory
•  Memory mapped files

Message transported by OS
from one address space to
another

•  Files
•  Pipes
•  FIFOs Today

22

Shared memory

Processes share the same segment of memory directly
•  Memory is mapped into the address space of each sharing process
•  Memory is persistent beyond the lifetime of the creating or modifying

processes (until deleted)

Does not provide mutual exclusion
•  Processes using the shared memory must do this on their own

23

Shared Memory

Processes request the segment

OS maintains the segment

Processes can attach/detach the segment

OS address
space

Private
address space

Process A Process B

Private
address
space

Shared
segment

24

Shared Memory

Can mark segment for deletion on last detach

OS address
space

Process A Process B

Private
address
space

Shared
segment

Private
address space

Private
address space

25

POSIX Shared Memory
#include <sys/types.h>

#include <sys/shm.h>

Create identifier (“key”) for a shared memory segment
 key_t ftok(const char *pathname, int proj_id);

k = ftok(“/my/file”, 0xaa);

Create shared memory segment

 int shmget(key_t key, size_t size, int shmflg);
id = shmget(key, size, 0644 | IPC_CREAT);

Access to shared memory requires an attach

 void *shmat(int shmid, const void *shmaddr, int shmflg);

 shared_memory = (char *) shmat(id, (void *) 0, 0);

26

POSIX Shared Memory

Write to the shared memory using normal system calls
sprintf(shared_memory, "Writing to shared
memory");

Detach the shared memory from its address space
int shmdt(const void *shmaddr);
shmdt(shared_memory);

27

Shared Memory example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {
 key_t key;
 int shmid;
 char *data;
 int mode;

28

 /* make the key: */
 if ((key = ftok(”shmdemo.c", 'R')) == -1) {
 perror("ftok");
 exit(1);
 }
 /* connect to (and possibly create) the segment: */
 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {
 perror("shmget");
 exit(1);
 }
 /* attach to the segment to get a pointer to it: */
 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(-1)) {
 perror("shmat");
 exit(1);
 }

Shared Memory example

29

 /* read or modify the segment, based on the command line: */
 if (argc == 2) {
 printf("writing to segment: \"%s\"\n", argv[1]);
 strncpy(data, argv[1], SHM_SIZE);
 } else
 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */
 if (shmdt(data) == -1) {
 perror("shmdt");
 exit(1);
 }

 return 0;

}

Shared Memory example

Run demo

