
1

Deadlock Solutions: Prevention

CS 241

March 31, 2014

University of Illinois

2

Announcement

Brighten’s office hours today, 12-1

3

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

4

Deadlock in the real world

Which way
should I go?

5

Deadlock in the real world

I can almost
get across Drat!

GRIDLOCK!

6

Deadlock: One-lane Bridge

Traffic only in one direction

Each section of a bridge can be viewed as a resource

What can happen?

7

Deadlock: One-lane Bridge

! Traffic only in one direction

! Each section of a bridge can be viewed as a resource

! Deadlock
" Resolved if cars back up (preempt resources and rollback)
" Several cars may have to be backed up

8

Deadlock: One-lane Bridge

! Traffic only in one direction

! Each section of a bridge can be viewed as a resource

! Deadlock
" Resolved if cars back up (preempt resources and rollback)
" Several cars may have to be backed up

! But, starvation is possible
!  e.g., if the rule is that Westbound cars always go first when present

9

Deadlock: One-lane Bridge

Deadlock vs. Starvation
•  Starvation = Indefinitely postponed

#  Delayed repeatedly over a long period of time while the
attention of the system is given to other processes

#  Logically, the process may proceed but the system never
gives it the CPU (unfortunate scheduling)

•  Deadlock = no hope
#  All processes blocked; scheduling change won’t help

I always have to
back up!

10

Deadlock solutions

Prevention
•  Design system so that deadlock is impossible

Avoidance
•  Steer around deadlock with smart scheduling

Detection & recovery
•  Check for deadlock periodically
•  Recover by killing a deadlocked processes and releasing its resources

Do nothing
•  Prevention, avoidance, and detection/recovery are expensive
•  If deadlock is rare, is it worth the overhead?
•  Manual intervention (kill processes, reboot) if needed

11

Deadlock Prevention

12

Deadlock prevention

Goal 1: devise resource allocation rules which make circular
wait impossible

•  Resources include mutex locks, semaphores, pages of memory, ...
•  ...but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
•  The rules will necessarily be conservative

#  Rule out some behavior that would not cause deadlock
•  But they shouldn’t be to be too conservative

#  We still need to get useful work done

13

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

14

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
•  Non-exclusive access only

#  Read-only access
•  Battle won!

#  War lost
#  Very bad at Goal #2

15

Rule #2: Allow preemption

A lock can be taken away from current owner
•  Let it go: If a process holding some resources is denied a further request,

that process must release its original resources
•  Or take it all away: OS preempts current resource owner, gives resource to

new process/thread requesting it

Breaks circular wait
•  ...because we don’t have to wait

Reasonable strategy sometimes
•  e.g. if resource is memory: “preempt” = page to disk

Not so convenient for synchronization resources
•  e.g., locks in multithreaded application
•  What if current owner is in the middle of a critical section updating

pointers? Data structures might be left in inconsistent state!

16

Rule #3: No hold and wait

When waiting for a resource, must not hold others
•  So, process can only have one resource locked
•  Or, it must request all resources at the beginning
•  Or, before asking for more: give up everything you have and request it

all at one time

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

17

Rule #3: No hold and wait

Constraining (mediocre job on Goal #2)
•  Better than Rules #1 and #2, but...
•  Often need more than one resource
•  Hard to predict at the beginning what resources you’ll need
•  Releasing and re-requesting is inefficient, complicates programming,

might lead to starvation

18

Rule #4: request resources in order

Must request resources in increasing order
•  Impose ordering on resources (any ordering will do)
•  If holding resource i, can only request resources > i

Less constraining (decent job on Goal #2)
•  Strictly easier to satisfy than “No hold and wait”: If we can request all

resources at once, then we can request them in increasing order
•  But now, we don’t need to request them all at once
•  Can pick the arbitrary ordering for convenience to the application
•  Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?

19

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

Dining Philosophers solution with
unnumbered resources

20

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

Dining Philosophers solution with
unnumbered resources

21

Dining Philosophers solution with
unnumbered resources

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

22

Dining Philosophers solution with
numbered resources

Instead, number resources

First request lower numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

23

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

24

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

25

Dining Philosophers solution with
numbered resources

Instead, number resources...

One philosopher can eat!

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

26

Without numbering

Ordered resource requests prevent
deadlock

Cycle!

27

With numbering

Ordered resource requests prevent
deadlock

3
4

7
8

Ordering violation:
Process holds 7,
is requesting 3

28

Proof by M.C. Escher

29

30

Summary: Deadlock prevention
methods
#1: No mutual exclusion

•  Thank you, Captain Obvious

#2: Allow preemption
•  OS can revoke resources from current owner

#3: No hold and wait
•  When waiting for a resource, must not currently hold any resource

#4: Request resources in order
•  When waiting for resource i, must not currently hold any resource j > i
•  As you can see: If your program satisfies #3 then it satisfies #4

31

“Request In Order” is more permissive

Will not deadlock Might deadlock
(depending on

scheduler, inputs, etc.)

Definitely
deadlock

Request in order

No hold
and wait

All programs

No mutual
exclusion

32

Q: What’s the rule of the road?

What’s the law? Does it resemble one of the rules we saw?

I can almost
get across Drat!

33

Summary

Deadlock prevention
•  Imposes rules on what system can do
•  These rules are conservative
•  Most useful technique: ordered resources
•  Application can do it; no special OS support

Next: dealing with deadlocks other ways
•  Avoidance
•  Detection & recovery

34

Deadlock Avoidance

35

Deadlock Avoidance

Idea: Steer around deadlock with smart scheduling

Assume OS knows:
•  Number of available units of each resource

#  Each individual mutex lock is a resource with one unit available
#  Each individual semaphore is a resource with possibly multiple units

available
•  For each process, current amount of each resource it owns
•  For each process, maximum amount of each resource it might ever

need
#  For a mutex this means: Will the process ever lock the mutex?

Assume processes are independent
•  If one blocks, others can finish if they have enough resources

36

How to guide the system down a safe
path of execution
Helper function: is a given state safe?

•  Safe = there’s definitely a way to finish the processes without deadlock

When a resource allocation request arrives
•  Pretend that we approve the request
•  Call function: Would we then be safe?
•  If safe,

#  Approve request
•  Otherwise,

#  Block process until its request can be safely approved
#  Some other process is scheduled in the meantime

This is called the Banker’s Algorithm
•  Dijkstra, 1965

37

What is a state?

For each resource,
•  Current amount available
•  Current amount allocated to each process
•  Future amount needed by each process (maximum)

Free

P1 alloc

P2 alloc

P1 need

P2 need

Buffer space A mutex

38

When is a state safe?

There is an execution order that can finish

In general, that’s hard to predict
•  So, we’re conservative: find sufficient conditions for safety
•  i.e., make some pessimistic assumptions

Pessimistic assumptions:
•  A process might request its maximum resources at any time
•  A process will never release its resources until it’s done

All state
s

Safe

Unsafe

Deadlocked

39

Computing safety

“There is an execution order that can finish”

Search for an order P1, P2, P3, ... such that:
•  P1 can finish using what it has plus what’s free
•  P2 can finish using what it has + what’s free + what P1 releases when it

finishes
•  P3 can finish using what it has + what’s free + what P1 and P2 will

release when they finish
•  ...

40

Computing safety

“There is an execution order that can finish”

More specifically... Search for an order P1, P2, P3, ... such that:
•  P1’s max resource needs ≤ what it has + what’s free
•  P2’s max resource needs ≤ what it has + what’s free + what P1 will

release when it finishes
•  P3’s max resource needs ≤ what it has + what’s free + what P1 and P2

will release when they finish
•  ...

But how do we find that order?

41

Inspiration

42

Playing Pickup Sticks with Processes

Pick up a stick on top
•  = Find a process that can finish with what it has plus what’s free

Remove stick
•  = Process finshes & releases its resources

Repeat until...
•  ...all processes have finished

#  Answer: safe
•  ...or we get stuck

#  Answer: unsafe

43

Try it: is this state safe?

P2 alloc

Buffer space A mutex
Free

P2 need

P1 alloc

P1 need

Which
process can

go first?

44

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Start with P2

Buffer space A mutex

45

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Release P2’s

resources

Buffer space A mutex

46

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Release P2’s

resources

Buffer space A mutex

47

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Continue with

P1

Buffer space A mutex

48

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Continue with

P1

Buffer space A mutex

49

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

Yes, it’s safe:
Order is P2,

P1

Buffer space A mutex

50

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Can P1 go first?

Can P2 go first?

Can P3 go first?

Buffer space

51

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Buffer space

52

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Buffer space

53

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Unsafe!

Can P1 go next?

Can P2 go next?

Buffer space

