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Announcement 

Brighten’s office hours today, 12-1 
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Deadlock: definition 

There exists a cycle of processes such that each process 
cannot proceed until the next process takes some specific 
action. 

Result: all processes in the cycle are stuck! 
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Deadlock in the real world 

Which way 
should I go? 
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Deadlock in the real world 

I can almost 
get across Drat! 

GRIDLOCK! 
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Deadlock: One-lane Bridge 

Traffic only in one direction 

Each section of a bridge can be viewed as a resource 

What can happen? 
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Deadlock: One-lane Bridge 

! Traffic only in one direction 

! Each section of a bridge can be viewed as a resource 

! Deadlock 
" Resolved if cars back up (preempt resources and rollback) 
" Several cars may have to be backed up 
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Deadlock: One-lane Bridge 

! Traffic only in one direction 

! Each section of a bridge can be viewed as a resource 

! Deadlock 
" Resolved if cars back up (preempt resources and rollback) 
" Several cars may have to be backed up 

! But, starvation is possible 
!  e.g., if the rule is that Westbound cars always go first when present 
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Deadlock: One-lane Bridge 

Deadlock vs. Starvation 
•  Starvation = Indefinitely postponed  

#  Delayed repeatedly over a long period of time while the 
attention of the system is given to other processes 

#  Logically, the process may proceed but the system never 
gives it the CPU (unfortunate scheduling) 

•  Deadlock = no hope 
#  All processes blocked; scheduling change won’t help 

I always have to 
back up! 
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Deadlock solutions 

Prevention 
•  Design system so that deadlock is impossible 

Avoidance 
•  Steer around deadlock with smart scheduling 

Detection & recovery 
•  Check for deadlock periodically 
•  Recover by killing a deadlocked processes and releasing its resources 

Do nothing 
•  Prevention, avoidance, and detection/recovery are expensive 
•  If deadlock is rare, is it worth the overhead? 
•  Manual intervention (kill processes, reboot) if needed 
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Deadlock Prevention 



12 

Deadlock prevention 

Goal 1: devise resource allocation rules which make circular 
wait impossible 

•  Resources include mutex locks, semaphores, pages of memory, ... 
•  ...but you can think about just mutex locks for now 

 

Goal 2: make sure useful behavior is still possible! 
•  The rules will necessarily be conservative 

#  Rule out some behavior that would not cause deadlock 
•  But they shouldn’t be to be too conservative 

#  We still need to get useful work done 
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Rule #1: No Mutual Exclusion 

For deadlock to happen: processes must claim exclusive 
control of the resources they require 

How to break it? 
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Rule #1: No Mutual Exclusion 

For deadlock to happen: processes must claim exclusive 
control of the resources they require 

How to break it? 
•  Non-exclusive access only  

#  Read-only access 
•  Battle won! 

#  War lost 
#  Very bad at Goal #2 
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Rule #2: Allow preemption 

A lock can be taken away from current owner 
•  Let it go: If a process holding some resources is denied a further request, 

that process must release its original resources 
•  Or take it all away: OS preempts current resource owner, gives resource to 

new process/thread requesting it 

Breaks circular wait 
•  ...because we don’t have to wait 

Reasonable strategy sometimes 
•  e.g. if resource is memory: “preempt” = page to disk 

Not so convenient for synchronization resources 
•  e.g., locks in multithreaded application 
•  What if current owner is in the middle of a critical section updating 

pointers?  Data structures might be left in inconsistent state! 
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Rule #3: No hold and wait 

When waiting for a resource, must not hold others 
•  So, process can only have one resource locked 
•  Or, it must request all resources at the beginning 
•  Or, before asking for more: give up everything you have and request it 

all at one time 

Breaks circular wait 
•  In resource allocation diagram: process with an outgoing link must have 

no incoming links 
•  Therefore, cannot have a loop! 
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Rule #3: No hold and wait 

Constraining (mediocre job on Goal #2) 
•  Better than Rules #1 and #2, but... 
•  Often need more than one resource 
•  Hard to predict at the beginning what resources you’ll need 
•  Releasing and re-requesting is inefficient, complicates programming, 

might lead to starvation 
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Rule #4: request resources in order 

Must request resources in increasing order 
•  Impose ordering on resources (any ordering will do) 
•  If holding resource i, can only request resources > i 

Less constraining (decent job on Goal #2) 
•  Strictly easier to satisfy than “No hold and wait”: If we can request all 

resources at once, then we can request them in increasing order 
•  But now, we don’t need to request them all at once 
•  Can pick the arbitrary ordering for convenience to the application 
•  Still might be inconvenient at times 

But why is it guaranteed to preclude circular wait? 
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Back to the trivial broken 
“solution”... 

 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(i); 
      take_fork((i+1)%N); 
      eat(); /* yummy */ 
      put_fork(i); 
      put_fork((i+1)%N); 
  } 
} 

Dining Philosophers solution with 
unnumbered resources 
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Dining Philosophers solution with 
unnumbered resources 

Back to the trivial broken 
“solution”... 

 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(i); 
      take_fork((i+1)%N); 
      eat(); /* yummy */ 
      put_fork(i); 
      put_fork((i+1)%N); 
  } 
} 
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Dining Philosophers solution with 
numbered resources 

Instead, number resources 

First request lower numbered fork 
 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(LOWER(i)); 
      take_fork(HIGHER(i)); 
      eat(); /* yummy */ 
      put_fork(LOWER(i)); 
      put_fork(HIGHER(i)); 
  } 
} 

 

1 

2 
3 

4 

5 
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Dining Philosophers solution with 
numbered resources 

Instead, number resources... 

Then request higher numbered fork 
 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(LOWER(i)); 
      take_fork(HIGHER(i)); 
      eat(); /* yummy */ 
      put_fork(LOWER(i)); 
      put_fork(HIGHER(i)); 
  } 
} 

 

1 

2 
3 

4 

5 
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Dining Philosophers solution with 
numbered resources 

Instead, number resources... 

Then request higher numbered fork 
 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(LOWER(i)); 
      take_fork(HIGHER(i)); 
      eat(); /* yummy */ 
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Dining Philosophers solution with 
numbered resources 

Instead, number resources... 

One philosopher can eat! 
 
# define N 5 
 
void philosopher (int i) { 
   while (TRUE) { 
      think(); 
      take_fork(LOWER(i)); 
      take_fork(HIGHER(i)); 
      eat(); /* yummy */ 
      put_fork(LOWER(i)); 
      put_fork(HIGHER(i)); 
  } 
} 

 

1 

2 
3 

4 

5 
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Without numbering 

Ordered resource requests prevent 
deadlock 

Cycle! 



27 

With numbering 

Ordered resource requests prevent 
deadlock 

3 
4 

7 
8 

Ordering violation: 
Process holds 7, 
is requesting 3 
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Proof by M.C. Escher 
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Summary: Deadlock prevention 
methods 
#1: No mutual exclusion 

•  Thank you, Captain Obvious 

#2: Allow preemption 
•  OS can revoke resources from current owner 

#3: No hold and wait 
•  When waiting for a resource, must not currently hold any resource 

#4: Request resources in order 
•  When waiting for resource i, must not currently hold any resource j > i 
•  As you can see: If your program satisfies #3 then it satisfies #4 
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“Request In Order” is more permissive 

Will not deadlock Might deadlock 
(depending on 

scheduler, inputs, etc.) 

Definitely 
deadlock 

Request in order 

No hold 
and wait 

All programs 

No mutual 
exclusion 
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Q: What’s the rule of the road? 

What’s the law? Does it resemble one of the rules we saw? 

I can almost 
get across Drat! 
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Summary 

Deadlock prevention 
•  Imposes rules on what system can do 
•  These rules are conservative 
•  Most useful technique: ordered resources 
•  Application can do it; no special OS support 

Next: dealing with deadlocks other ways 
•  Avoidance 
•  Detection & recovery 
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Deadlock Avoidance 
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Deadlock Avoidance 

Idea: Steer around deadlock with smart scheduling 

Assume OS knows: 
•  Number of available units of each resource 

#  Each individual mutex lock is a resource with one unit available 
#  Each individual semaphore is a resource with possibly multiple units 

available 
•  For each process, current amount of each resource it owns 
•  For each process, maximum amount of each resource it might ever 

need 
#  For a mutex this means: Will the process ever lock the mutex? 

Assume processes are independent 
•  If one blocks, others can finish if they have enough resources 
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How to guide the system down a safe 
path of execution 
Helper function: is a given state safe? 

•  Safe = there’s definitely a way to finish the processes without deadlock 

When a resource allocation request arrives 
•  Pretend that we approve the request 
•  Call function: Would we then be safe?  
•  If safe, 

#  Approve request 
•  Otherwise, 

#  Block process until its request can be safely approved 
#  Some other process is scheduled in the meantime 

This is called the Banker’s Algorithm 
•  Dijkstra, 1965 
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What is a state? 

For each resource, 
•  Current amount available 
•  Current amount allocated to each process 
•  Future amount needed by each process (maximum) 

 

Free 

P1 alloc 

P2 alloc 

P1 need 

P2 need 

Buffer space A mutex 
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When is a state safe? 

There is an execution order that can finish 

In general, that’s hard to predict 
•  So, we’re conservative: find sufficient conditions for safety 
•  i.e., make some pessimistic assumptions 

Pessimistic assumptions: 
•  A process might request its maximum resources at any time 
•  A process will never release its resources until it’s done 

All state
s 

Safe 

Unsafe 

Deadlocked 
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Computing safety 

“There is an execution order that can finish” 

Search for an order P1, P2, P3, ... such that: 
•  P1 can finish using what it has plus what’s free 
•  P2 can finish using what it has + what’s free + what P1 releases when it 

finishes 
•  P3 can finish using what it has + what’s free + what P1 and P2 will 

release when they finish 
•  ... 
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Computing safety 

“There is an execution order that can finish” 

More specifically... Search for an order P1, P2, P3, ... such that: 
•  P1’s max resource needs ≤ what it has + what’s free 
•  P2’s max resource needs ≤ what it has + what’s free + what P1 will 

release when it finishes 
•  P3’s max resource needs ≤ what it has + what’s free + what P1 and P2 

will release when they finish 
•  ... 

But how do we find that order? 
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Inspiration 



42 

Playing Pickup Sticks with Processes 

Pick up a stick on top 
•  = Find a process that can finish with what it has plus what’s free 

Remove stick 
•  = Process finshes & releases its resources 

Repeat until... 
•  ...all processes have finished  

#  Answer: safe 
•  ...or we get stuck  

#  Answer: unsafe 
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Try it: is this state safe? 

P2 alloc 

Buffer space A mutex 
Free 

P2 need 

P1 alloc 

P1 need 

Which 
process can 

go first? 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Start with P2 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Release P2’s 

resources 

Buffer space A mutex 



46 

Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Release P2’s 

resources 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Continue with 

P1 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Continue with 

P1 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

Yes, it’s safe:  
Order is P2, 

P1 

Buffer space A mutex 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Can P1 go first? 

Can P2 go first? 

Can P3 go first? 

Buffer space 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Buffer space 
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Example 2: Is this state safe? 
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P3 need 

Buffer space 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Unsafe! 

Can P1 go next? 

Can P2 go next? 

Buffer space 


