
Signals

Copyright ©: University of Illinois CS 241 Staff 1

2

Posix Signals
n  Signals are an integral part of multitasking in the UNIX/POSIX

environment. Signals are used for many purposes, including:

¡  Exception handling (bad pointer accesses, divide by zero, etc.)
¡  Process notification of asynchronous event (I/O completion, timer

expiration, etc.)
¡  Process termination in abnormal circumstances
¡  Interprocess communication

n  Signals are similar to the notion of hardware interrupts.
However, they are managed and delivered by the Operating
System.

3

Dealing with signals
n  There are different ways in which you can deal with a signal:

¡  You can block a signal for a while, and get to it (by unblocking it) later.
Blocking signals is a temporary measure.

¡  You can ignore the signal, in which case it is as if the signal never
arrived.

¡  You can handle the signal by executing a default action to deal with the
signal (the default action often is to kill the process receiving the signal)

¡  You can handle the signal by setting up a function to be called
whenever a signal with a particular number arrives.

n  There are two spare signals available to user applications:
SIGUSR1 and SIGUSR2. Any application can use them as it
wants.

4

Steps of Signal’s Delivery and
Handling

n  Event of sending a signal to a process:
¡  The OS updates the process descriptor to notify that there is a pending

signal.

¡  At any time, only one pending signal of a given type may exist for a
process; additional pending signals of the same type to the same
process are not queued but simply discarded (each signal type has a
binary flag).

Signal sent

 by the OS or

 by a process

Process

mask

Signal is received by

the current executing process

 signal pending

(blocked signal)

 ignore signal default action user’s handler

 signal

received

Steps of Signal’s Delivery and
Handling

n  Event of receiving a signal:
¡  If the sent signal is blocked by the process mask, the process will not

receive the signal until it removes the block: the signal remains pending.

¡  If the sent signal is received by the process, the process can ignore the
signal, or execute a default action, or execute user’s signal handler.

5

Signal sent

 by the OS or

 by a process

Process

mask

Signal is received by

the current executing process

 signal pending

(blocked signal)

 ignore signal default action user’s handler

 signal

received

How Signals Work
Signal Generated Process

Signal Handler

Signal delivered

Signal not blocked

Signal Caught by handler

Return from Signal Handler

Process Resumed

Process
Signal
Mask

Handler
is executed

Process
Signal
Mask

A signal handler interacts with the regular execution flow of the corresponding process
by simply sharing global variables: the regular execution flow and signal handler
share the same address space.

7

Examples of POSIX Required
Signals

Signal Description default action

SIGALRM Timer signal Terminate process

SIGBUS Bus error (bad memory access) Terminate process and
core dump

SIGCHLD child terminated or stopped ignore

SIGINT Interrupt from keyboard (usually
ctrl-C)

Terminate process

SIGKILL Kill signal (cannot be blocked; e.g.,
kill -9 pid)

Terminate process

SIGUSR1 User-defined signal 1 Terminate process

SIGUSR2 User-defined signal 2 Terminate process

Each process uses binary flag
for each type of pending signal

8 Copyright ©: University of Illinois CS 241 Staff

// Example tested on Linux
#define N 10
int ccount = 0;

void child_handler(int sig)
{
 pid_t pid = wait(NULL);
 ccount++;
 printf("MSG #%d: Received signal %d from process %d\n",
 ccount, sig, pid);
}

int main()
{
 pid_t pid[N];
 int i, child_status;
 signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Exit */
 exit(0);
 }
 while (1);
}

Necessary includes:
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdlib.h>

Testing the example
Output

mcaccamo@versilia:~/Dropbox/uiuc/cs241_s14$./signal
MSG #1: Received signal 17 from process 13290
MSG #2: Received signal 17 from process 13291
MSG #3: Received signal 17 from process 13292
MSG #4: Received signal 17 from process 13294
MSG #5: Received signal 17 from process 13295
MSG #6: Received signal 17 from process 13296
MSG #7: Received signal 17 from process 13298
MSG #8: Received signal 17 from process 13299
^C
mcaccamo@versilia:~/Dropbox/uiuc/cs241_s14$

Copyright ©: University of Illinois CS 241 Staff 9

