Signals

Copyright ©: University of Illinois CS 241 Staff



Posix Signals

Signals are an integral part of multitasking in the UNIX/POSIX
environment. Signals are used for many purposes, including:

o Exception handling (bad pointer accesses, divide by zero, etc.)

o Process notification of asynchronous event (I/O completion, timer
expiration, etc.)

o Process termination in abnormal circumstances

o Interprocess communication

Signals are similar to the notion of hardware interrupts.
However, they are managed and delivered by the Operating

System.
o 1



Dealing with signals

There are different ways in which you can deal with a signal:

o You can block a signal for a while, and get to it (by unblocking it) later.
Blocking signals is a temporary measure.

o You can ignore the signal, in which case it is as if the signal never
arrived.

o You can handle the signal by executing a default action to deal with the
signal (the default action often is to kill the process receiving the signal)

o You can handle the signal by setting up a function to be called
whenever a signal with a particular number arrives.

There are two spare signals available to user applications:
SIGUSR1 and SIGUSR2. Any application can use them as it
wants.

o 1



Steps of Signal’ s Delivery and ]
Handling

Event of sending a signal to a process:

o The (l)S updates the process descriptor to notify that there is a pending
signal.

o At any time, only one pending signal of a given type may exist for a
process; additional pending signals of the same type to the same
Brocess are not queued but simply discarded (each signal type has a

inary flag).

signal pending

(blocked signal) i

L

received




Steps of Signal’ s Delivery and ]
Handling

Event of receiving a signal:

o If the sent signal is blocked by the process mask, the process will not
receive the signal until it removes the block: the signal remains pending.

o If the sent signal is received by the process, the process can ignore the
signal, or execute a default action, or execute user’ s signal handler.

L

received

signal pending

(blocked signal) i




How Signals Work

Process Signal Generated

Process
Signal
Mask

Si | C ht by handl
Signal delivered IgAna/aug y handler

Signal not blocked
Signal Handler (¢ fandier
is executed

Process ™ _
Signal Return from Signal Handler
Mask

Process Resumed

A signal handler interacts with the regular execution flow of the corresponding process
by simply sharing global variables: the regular execution flow and signal handler
share the same address space. ][




Examples of POSIX Required
Signals

Signal Description default action

SIGALRM | Timer signal Terminate process

SIGBUS Bus error (bad memory access) Terminate process and

core dump

SIGCHLD child terminated or stopped ignore

SIGINT Interrupt from keyboard (usually Terminate process
ctrl-C)

SIGKILL Kill signal (cannot be blocked; e.g., Terminate process
kill -9 pid )

SIGUSR1 | User-defined signal 1 Terminate process

SIGUSR2 | User-defined signal 2 Terminate process

3]



Each process uses binary flag
for each type of pending signal

// Example tested on Linux
#define N 10

int ccount = 0;

void child handler (int sig)
{

}

Necessary includes:
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

pid_t pid = wait(NULL) ; #include <stdlib.h>

ccount++;
printf ("MSG #%d: Received signal %d from process %d\n",
ccount, sig, pid);

int main ()

{

pid t pid[N];

int i, child status;

signal (SIGCHLD, child handler) ;
for (i = 0; 1 < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit (0) ;

}
while (1)




Testing the example

mcaccamo@versilia:~/Dropbox/uiuc/cs241_s14% ./signal
MSG #1: Received signal 17 from process 13290
MSG #2: Received signal 17 from process 13291
MSG #3: Received signal 17 from process 13292
MSG #4: Received signal 17 from process 13294
MSG #5: Received signal 17 from process 13295
MSG #6: Received signal 17 from process 13296
MSG #7: Received signal 17 from process 13298
MSG #8: Received signal 17 from process 13299
rC
mcaccamo@versilia:~/Dropbox/uiuc/cs241_s14%

Copyright ©: University of Illinois CS 241 Staff



