Deadlock

CS 24|

March 19, 2014

The
Dining Philosophers
Problem

Drinking Philosophers

Dining Philosophers

\\

/77
)
—\Q/_-‘—? ")

Locierertle

Dining Philosophers

N philosophers and N forks
Philosophers eat, think
Eating needs 2 forks

Pick up one fork at a time

Each fork used by one person at a time

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {
while (TRUE) ({
think () ;
lock fork(i);
lock fork((i+l)3N);

eat(); /* yummy */

unlock fork(1i);
unlock_fork ((i+1)%N) ; Does this work?

Dining Philosophers: Take 1

define N 5

void philosopher (int i) ({ @g
while (TRUE) ({ % j
think () ;
mmmeuunds) 1ock fork (i) ; DEADLOCK
lock fork((i+l)3N); .

eat(); /* yummy */ Ww@{? [ﬂ

unlock_fork(l),
unlock_fork((i+1)%N);

Progress diagram

Thread 2 Represents Tc.t.ate of
system (position of each
I ° o o o o of the two threads in their
executions)
® [) (] o
4 = = Instructions in critical
sections (wrt to some
iy it y ¢ ¢ P ° shared variable) should
crltlcal< . be i | d
section Unsafe region not be interleave
[o o o | |
Sets of states where such
! R - - . interleaving occeurs form
unsafe regions
L @ @ @ @ o— Thread I
N /
N

critical section

Progress diagram

critical
section

Thread 2

<

safe

]

Unsafe region

]
|

*’

unsafe

critical section

¢ “— Thread |

But, any trajectory that
goes up and to the
right might occur...

Reminder: process diagram

Thread 2 :
Mutexes provide mutually
1 1 0 0 0 0 1 1 .
. exclusive access to shared
T variable by surrounding
S L L critical section with wait and
post(s) : : T : post operations on
' . . semaphore s (initially set to
1
0 0 0)
p . - ° -1 = - °
) . Unsafe region . Semaphore invariant
' . et e ‘ creates a forbidden
o 0 region
. that encloses the unsafe
wait(s)| 1 0 0 0 0 1 1 region that must not be
3 ° ° 0)y ¢) ¢ ===l @ ° .
T entered by any trajectory.
1 1
el el 58 0 0 T .l Thread |
ﬂ wait(s) post(s)

Initially
s = |

Two shared resources

Descartes
U(fo)]
Forbidden region
for f,
U(fl)]
L(fo) —
L(f,) —

f,=f,=|

, | | — Awristotle
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

Two shared resources

Any trajectory that enters

Descartes the deadlock region will
eventually reach the
deadlock state, waiting f
it Deadlock .ea ock state, waiting for
(fo) . _ either f, or f, to become
Forbidden region state
for f nonzero
0
Ul Other trajectories luck out
and skirt the deadlock
region
L(f,) —
(O) .
Deadiock | FOrbidden region Unfortunate fact: deadlock
L(f,) — region forf, is often nondeterministic
(race)
Aristotle

| | | |
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

fo

fi

Deadlock: definition

There exists a cycle of processes such that each process

cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Example:

* Pl holds resource Rl & is waiting to acquire R2 before unlocking them
* P2 holds resource R2 & is waiting to acquire R| before unlocking them

Resource allocation graphs

Nodes
* Circle: Processes @ R2
* Square: Resources Pl is P2
using requested
Edges R R2
* From resource to process = R @

resource assigned to process

* From process to resource =
process requests (and is waiting
for) resource

Resource allocation graphs

Placqwres @ Pl requests

Nodes

* Circle: Processes
* Square: Resources

Deadlock

* Processes Pl and P2 are in

deadlock over resources R
and r2

RI

P2
requests R

Circular
wait

P2
acquires R2

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution’ ...

define N 5

void philosopher (int i) ({

while (TRUE) ({ e
think () ;
lock fork(i);
lock fork((i+1)%N) ;
eat(); /* yummy */
unlock fork (i) ;
unlock fork((i+1)%3N) ;

Dining Philosophers
resource allocation graph

If we use the trivial
broken “solution’ ...

One node per o\
philosopher \
One node per fork % ¥
Descares @
Everyone tries to pick up e

left fork

* Result: Request edges \@{?

Dining Philosophers
resource allocation graph

If we use the trivial
broken “solution’ ...

One node per
philosopher

One node per fork
PDescacre

=

Everyone tries to pick up
left fork

* Result: Request edges

* Everyone succeeds!

Dining Philosophers
resource allocation graph

If we use the trivial
broken “solution’ ...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

* Result: Request edges

* Everyone succeeds!

* Result: Assignment edges

Locisrorte

Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assignment edges

Everyone tries to pick up
right fork

* Result: Request edges

Locisrorte

20

Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assignment edges

Everyone tries to pick up
right fork

* Result: Request edges
* DEADLOCK

Locisrorte

21

Idea: change the order

Descartes
U(fo) - Deadlock
0
Forbidden region state
forf,
() 0 Old order
)=
. /
(o) ~ | |
Deadlock Forbidden region
L(f,) — region for f,
|

, | | — Awristotle
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

22

Idea: change the order

Forbidden region

forf;

Descartes
U(f,)
U(fo)]
L(f|) ~
Forbidden region
for f,
L(fo) o

Aristotle

Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

New order

Deadlock impossible!

23

Deadlock
* Cycle of processes / threads, each waiting on the next
* Modeled by cycle in resource allocation graph

* Often nondeterministic, tricky to debug

Next: dealing with deadlocks
* “change the order” was a nice trick... but why did it work?
* Is there a simple technique that will work always!?

* Are there other ways of avoiding deadlocks?

24

Deadlock solutions

Prevention

* Design system so that deadlock is impossible

Avoidance

* Steer around deadlock with smart scheduling

Detection & recovery
* Check for deadlock periodically

* Recover by killing a deadlocked processes and releasing its resources

Do nothing

* Prevention, avoidance, and detection/recovery are expensive
* If deadlock is rare, is it worth the overhead?
* Manual intervention (kill processes, reboot) if needed

25

Deadlock Prevention

Deadlock prevention

Goal I: devise resource allocation rules which make circular
wait impossible
* Resources include mutex locks, semaphores, pages of memory, ...

* ..but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
* The rules will necessarily be conservative
= Rule out some behavior that would not cause deadlock
* But they shouldn’t be to be too conservative

= We still need to get useful work done

27

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

28

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
* Non-exclusive access only
= Read-only access
* Battle won!
= War lost
= Very bad at Goal #2

29

Rule #2: Allow preemption

A lock can be taken away from current owner
* Let it go: If a process holding some resources is denied a further request,
that process must release its original resources
* Or take it all away: OS preempts current resource owner, gives resource to
new process/thread requesting it

Breaks circular wait
e ..because we don’t have to wait

Reasonable strategy sometimes
* e.g. if resource is memory: “preempt” = page to disk

Not so convenient for synchronization resources

* e.g, locks in multithreaded application

* What if current owner is in the middle of a critical section updating
pointers! Data structures might be left in inconsistent state!

30

Question

Suppose every thread only tries to hold one resource at a time

* So, a thread might hold one mutex lock...
* But it will never try to acquire a second mutex lock if it has one already

ls deadlock possible! Give an example or explain why not.

* (Hint: what would the resource allocation diagram look like?)

31

Rule #3: No hold and wait

When waiting for a resource, must not hold others
* So, process can only have one resource locked
* Or, it must request all resources at the beginning

* Or, before asking for more: give up everything you have and request it
all at one time

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

32

Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

Q: Which of these request links would be disallowed?

o—B

@ Process =3 request

. Resource === oOwnership

33

Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

A: Legal links are...

@ Process = request
. Resource === oOwnership

34

Rule #3: No hold and wait

Very constraining (mediocre job on Goal #2)
* Better than Rules #1 and #2, but...
* Often need more than one resource
* Hard to predict at the beginning what resources you’ll need

* Releasing and re-requesting is inefficient, complicates programming,
might lead to starvation

35

Rule #4: request resources in order

Must request resources in increasing order

* Impose ordering on resources (any ordering will do)

* If holding resource i, can only request resources > i

Much less constraining (decent job on Goal #2)

* Strictly easier to satisfy than “No hold and wait”: If we can request all
resources at once, then we can request them in increasing order

* But now, we don’t need to request them all at once
* Can pick the arbitrary ordering for convenience to the application

* Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?

36

Announcements

Problem 3: watch for announcement

Brighten out of town Friday

* Marco returns

37

