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Dining Philosophers

N philosophers and N forks
Philosophers eat, think
Eating needs 2 forks

Pick up one fork at a time

Each fork used by one person at a time




Dining Philosophers: Take 1

# define N 5

void philosopher (int i) {
while (TRUE) ({
think () ;
lock fork(i);
lock fork((i+l)3N);

eat(); /* yummy */

unlock fork(1i);
unlock_fork ((i+1)%N) ; Does this work?
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Progress diagram
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Reminder: process diagram
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Two shared resources
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Deadlock: definition

There exists a cycle of processes such that each process

cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Example:

* Pl holds resource Rl & is waiting to acquire R2 before unlocking them
* P2 holds resource R2 & is waiting to acquire R| before unlocking them



Resource allocation graphs

Nodes
* Circle: Processes @ R2
* Square: Resources Pl is P2
using requested
Edges R R2
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resource assigned to process

* From process to resource =
process requests (and is waiting
for) resource



Resource allocation graphs

Placqwres @ Pl requests

Nodes

* Circle: Processes
* Square: Resources

Deadlock
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Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution’ ...

# define N 5

void philosopher (int i) ({

while (TRUE) ({ e
think () ;
lock fork(i);
lock fork((i+1)%N) ;
eat(); /* yummy */
unlock fork (i) ;
unlock fork((i+1)%3N) ;
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Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assignment edges

Everyone tries to pick up
right fork

* Result: Request edges

Locisrorte
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Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assignment edges

Everyone tries to pick up
right fork

* Result: Request edges
* DEADLOCK

Locisrorte

21



Idea: change the order
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Idea: change the order

Forbidden region

forf;

Descartes
U(f,)
U(fo) ]
L(f|) ~
Forbidden region
for f,
L(fo) o

Aristotle

Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

New order

Deadlock impossible!
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Deadlock
* Cycle of processes / threads, each waiting on the next
* Modeled by cycle in resource allocation graph

* Often nondeterministic, tricky to debug

Next: dealing with deadlocks
* “change the order” was a nice trick... but why did it work?
* Is there a simple technique that will work always!?

* Are there other ways of avoiding deadlocks?
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Deadlock solutions

Prevention

* Design system so that deadlock is impossible

Avoidance

* Steer around deadlock with smart scheduling

Detection & recovery
* Check for deadlock periodically

* Recover by killing a deadlocked processes and releasing its resources

Do nothing

* Prevention, avoidance, and detection/recovery are expensive
* If deadlock is rare, is it worth the overhead?
* Manual intervention (kill processes, reboot) if needed
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Deadlock Prevention



Deadlock prevention

Goal I: devise resource allocation rules which make circular
wait impossible
* Resources include mutex locks, semaphores, pages of memory, ...

* ..but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
* The rules will necessarily be conservative
= Rule out some behavior that would not cause deadlock
* But they shouldn’t be to be too conservative

= We still need to get useful work done
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Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

28



Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
* Non-exclusive access only
= Read-only access
* Battle won!
= War lost
= Very bad at Goal #2
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Rule #2: Allow preemption

A lock can be taken away from current owner
* Let it go: If a process holding some resources is denied a further request,
that process must release its original resources
* Or take it all away: OS preempts current resource owner, gives resource to
new process/thread requesting it

Breaks circular wait
e ..because we don’t have to wait

Reasonable strategy sometimes
* e.g. if resource is memory: “preempt” = page to disk

Not so convenient for synchronization resources

* e.g, locks in multithreaded application

* What if current owner is in the middle of a critical section updating
pointers! Data structures might be left in inconsistent state!
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Question

Suppose every thread only tries to hold one resource at a time

* So, a thread might hold one mutex lock...
* But it will never try to acquire a second mutex lock if it has one already

ls deadlock possible! Give an example or explain why not.

* (Hint: what would the resource allocation diagram look like?)
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Rule #3: No hold and wait

When waiting for a resource, must not hold others
* So, process can only have one resource locked
* Or, it must request all resources at the beginning

* Or, before asking for more: give up everything you have and request it
all at one time

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!
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Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

Q: Which of these request links would be disallowed?

o—B

@ Process =3  request

. Resource === oOwnership
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Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

A: Legal links are...

@ Process = request
. Resource === oOwnership
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Rule #3: No hold and wait

Very constraining (mediocre job on Goal #2)
* Better than Rules #1 and #2, but...
* Often need more than one resource
* Hard to predict at the beginning what resources you’ll need

* Releasing and re-requesting is inefficient, complicates programming,
might lead to starvation
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Rule #4: request resources in order

Must request resources in increasing order

* Impose ordering on resources (any ordering will do)

* If holding resource i, can only request resources > i

Much less constraining (decent job on Goal #2)

* Strictly easier to satisfy than “No hold and wait”: If we can request all
resources at once, then we can request them in increasing order

* But now, we don’t need to request them all at once
* Can pick the arbitrary ordering for convenience to the application

* Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?
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Announcements

Problem 3: watch for announcement

Brighten out of town Friday

* Marco returns
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