
1

Deadlock

CS 241

March 19, 2014

University of Illinois

Slides adapted in part from material accompanying Bryant & O’Hallaron,
“Computer Systems: A Programmer's Perspective”, 2/E

2

The
Dining Philosophers

Problem

3

Drinking Philosophers

“John Stuart Mill,
of his own free will,
On half a pint of shandy
was particularly ill ...”

4

Caccamo!

Dining Philosophers

5

Dining Philosophers

N philosophers and N forks

Philosophers eat, think

Eating needs 2 forks

Pick up one fork at a time

Each fork used by one person at a time

6

Dining Philosophers: Take 1

Does this work?

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);

 eat(); /* yummy */

 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

7

Dining Philosophers: Take 1

DEADLOCK
!

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);

 eat(); /* yummy */

 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

8

Progress diagram
Represents state of
system (position of each
of the two threads in their
executions)

Instructions in critical
sections (wrt to some
shared variable) should
not be interleaved

Sets of states where such
interleaving occurs form
unsafe regions

Thread 1

Thread 2

critical section

critical
section Unsafe region

9

Progress diagram

Thread 1

Thread 2

Unsafe region

But, any trajectory that
goes up and to the
right might occur...

unsafe

safe

critical section

critical
section

10

Unsafe region

Reminder: process diagram
Mutexes provide mutually
exclusive access to shared
variable by surrounding
critical section with wait and
post operations on
semaphore s (initially set to
1)

Semaphore invariant
creates a forbidden
region
that encloses the unsafe
region that must not be
entered by any trajectory.

wait(s) post(s)
Thread 1

Thread 2

wait(s)

post(s)

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

11

Two shared resources

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

f0=f1=1

12

Two shared resources
Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for
either f0 or f1 to become
nonzero

Other trajectories luck out
and skirt the deadlock
region

Unfortunate fact: deadlock
is often nondeterministic
(race)

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

Deadlock
state

Deadlock
region

f0=f1=1

13

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Example:
•  P1 holds resource R1 & is waiting to acquire R2 before unlocking them
•  P2 holds resource R2 & is waiting to acquire R1 before unlocking them

14

R1

R2 P1

P2

Resource allocation graphs

Nodes
•  Circle: Processes
•  Square: Resources

Edges
•  From resource to process =

resource assigned to process
•  From process to resource =

process requests (and is waiting
for) resource

P1 is
using
R1

P2
requested

R2

15

R1 R2

P1

P2

P1 requests
R2

P2
acquires R2

P2
requests R1

P1 acquires
R1

Resource allocation graphs

Nodes
•  Circle: Processes
•  Square: Resources

Deadlock
•  Processes P1 and P2 are in

deadlock over resources R1
and r2

Circular
wait

16

If we use the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);
 eat(); /* yummy */
 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

Dining Philosophers
resource allocation graph

Caccamo!

17

Caccamo!

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

P3

P4 P5

P1

P2

R1 R2

R3

R4

R5

18

Caccamo!

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

19

Caccamo!

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

20

Caccamo!

Dining Philosophers
resource allocation graph
Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

Everyone tries to pick up
right fork

•  Result: Request edges

21

Caccamo!

Dining Philosophers
resource allocation graph
Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

Everyone tries to pick up
right fork

•  Result: Request edges

•  DEADLOCK

22

Idea: change the order

Old order

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

Deadlock
state

Deadlock
region

f0=f1=1

23

Idea: change the order

New order

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f0)

L(f0)

L(f1)

U(f1)

Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

f0=f1=1

Deadlock impossible!

24

Summary

Deadlock
•  Cycle of processes / threads, each waiting on the next
•  Modeled by cycle in resource allocation graph
•  Often nondeterministic, tricky to debug

Next: dealing with deadlocks
•  “change the order” was a nice trick... but why did it work?
•  Is there a simple technique that will work always?
•  Are there other ways of avoiding deadlocks?

25

Deadlock solutions

Prevention
•  Design system so that deadlock is impossible

Avoidance
•  Steer around deadlock with smart scheduling

Detection & recovery
•  Check for deadlock periodically
•  Recover by killing a deadlocked processes and releasing its resources

Do nothing
•  Prevention, avoidance, and detection/recovery are expensive
•  If deadlock is rare, is it worth the overhead?
•  Manual intervention (kill processes, reboot) if needed

26

Deadlock Prevention

27

Deadlock prevention

Goal 1: devise resource allocation rules which make circular
wait impossible

•  Resources include mutex locks, semaphores, pages of memory, ...
•  ...but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
•  The rules will necessarily be conservative

!  Rule out some behavior that would not cause deadlock
•  But they shouldn’t be to be too conservative

!  We still need to get useful work done

28

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

29

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
•  Non-exclusive access only

!  Read-only access
•  Battle won!

!  War lost
!  Very bad at Goal #2

30

Rule #2: Allow preemption

A lock can be taken away from current owner
•  Let it go: If a process holding some resources is denied a further request,

that process must release its original resources
•  Or take it all away: OS preempts current resource owner, gives resource to

new process/thread requesting it

Breaks circular wait
•  ...because we don’t have to wait

Reasonable strategy sometimes
•  e.g. if resource is memory: “preempt” = page to disk

Not so convenient for synchronization resources
•  e.g., locks in multithreaded application
•  What if current owner is in the middle of a critical section updating

pointers? Data structures might be left in inconsistent state!

31

Question

Suppose every thread only tries to hold one resource at a time
•  So, a thread might hold one mutex lock...
•  But it will never try to acquire a second mutex lock if it has one already

Is deadlock possible? Give an example or explain why not.
•  (Hint: what would the resource allocation diagram look like?)

32

Rule #3: No hold and wait

When waiting for a resource, must not hold others
•  So, process can only have one resource locked
•  Or, it must request all resources at the beginning
•  Or, before asking for more: give up everything you have and request it

all at one time

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

33

Rule #3: No hold and wait

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

Q: Which of these request links would be disallowed?

Process

Resource

request

ownership

34

Rule #3: No hold and wait

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

A: Legal links are...

Process

Resource

request

ownership

35

Rule #3: No hold and wait

Very constraining (mediocre job on Goal #2)
•  Better than Rules #1 and #2, but...
•  Often need more than one resource
•  Hard to predict at the beginning what resources you’ll need
•  Releasing and re-requesting is inefficient, complicates programming,

might lead to starvation

36

Rule #4: request resources in order

Must request resources in increasing order
•  Impose ordering on resources (any ordering will do)
•  If holding resource i, can only request resources > i

Much less constraining (decent job on Goal #2)
•  Strictly easier to satisfy than “No hold and wait”: If we can request all

resources at once, then we can request them in increasing order
•  But now, we don’t need to request them all at once
•  Can pick the arbitrary ordering for convenience to the application
•  Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?

37

Announcements

Problem 3: watch for announcement

Brighten out of town Friday
•  Marco returns

