Condition Variables

Deadlock

CS 24|

March 17,2014

Today

Condition Variables (reminder)

* Reader-Writer Problem: a better solution

Deadlock

* Dining Philosophers Problem

Condition Variables (Reminder)

Synchronization primitives

Mutex locks

* Used for exclusive access to a shared resource (critical section)
* Operations: Lock, unlock

Sempahores
* Generalization of mutexes: Count number of available “resources”

* Wait for an available resource (decrement), notify availability
(increment)

* Example: wait for free buffer space, signal more buffer space

Condition variables
* Represent an arbitrary event
* Operations: Wait for event, signal occurrence of event

e Tied to a mutex for mutual exclusion

Condition variables

Goal: Wait for a specific event to happen

* Event depends on state shared with multiple threads

Solution: condition variables
e “Names’”’ an event

* Internally, is a queue of threads waiting for the event

Basic operations
* Wait for event
* Signal occurrence of event to one waiting thread

* Signal occurrence of event to all waiting threads

Signaling, not mutual exclusion

* Condition variable is intimately tied to a mutex

Condition variable “Hello world?”

[see code, in class and on web site]

Readers-Writers
with Condition Variables

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:

* Reader threads only read the object
* Writer threads modify the object
* Writers must have exclusive access to the object

* Unlimited number of readers can access the object

Thread 2
Reader | Writer

Reader OK No

Thread |

Writer No No

Recall: Semaphore solution

Shared:

Writers:

int readcnt;
sem_t mutex,

/* Initially = @ */
w; /* Both initially = 1 */

sem_wait(&w);

sem_post(&w);

/* Critical section */
/* Writing here */

(full code
online)

Readers:

sem_wait(&mutex);

readcnt++;

1f (readcnt == 1) /* First reader in */

sem_wait(&w); /* Lock out writers */
sem_post(&mutex);

/* Main critical section */
/* Reading would happen here */

sem_wait(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */
sem_post(&w); /* Let in writers */

sem_post(&mutex);

Condition variable solution

|dea:

* If it’s safe, just go ahead and read or write
* Otherwise, wait for my “turn”

Initialization:

/* Global variables */

pthread_mutex_t m;

pthread_cond_t turn; /* Event: it's our turn */
int writing;

int reading;

void init(void) {
pthread_mutex_init(&m, NULL);
pthread_cond_init(&turn, NULL);
reading = 0;
writing = 0;

Condition variable solution

void reader(void) void writer(void)

{ {
mutex_lock(&m); mutex_lock(&m);
while (writing) while (reading || writing)

cond_wait(&turn, &m); cond_wait(&turn, &m);

reading++; writing++;
mutex_unlock(&m); mutex_unlock(&m);
/* Reading here */ /* Writing here */
mutex_lock(&m); mutex_lock(&m);
reading--; writing--;
cond_signal(&turn); cond_signal (&turn);
mutex_unlock(&m); mutex_unlock(&m);

} }

(Note:“pthread_" prefix removed from all
synchronization calls for compactness)

Familiar problem: Starvation

while (writing) while (reading || writing)
cond_wait(&turn, &m); cond_wait(&turn, &m);

(Note:“pthread_" prefix removed from all
synchronization calls for compactness)

Idea: take turns

If a writer is waiting, then reader should wait its turn

* Even if it’s safe to proceed (only readers are in critical section)

Requires keeping track of waiting writers

/* Global variables */

pthread_mutex_t m;

pthread_cond_t turn; /* Event: someone else's turn */
int reading;

int writing;

int writers; _

void init(void) {
pthread_mutex_init(&m, NULL);
pthread_cond_init(&turn, NULL);

reading = 0;
writing = 0;
writers = 0; <mmm

Taking turns

void reader(void)

{
mutex_lock(&m);

1f (writers)
cond_wait(&turn, &m);
while (writing)
cond_wait(&turn, &m);
reading++;
mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_signal(&turn);
mutex_unlock(&m);

void writer(void)

{

mutex_lock(&m);

writers++;

while (reading || writing)
cond_wait(&turn, &m);

writing++;

mutex_unlock(&m);
/* Writing here */

mutex_lock(&m);
writing--;
writers--;
cond_signal(&turn);
mutex_unlock(&m);

Another problem :-(

void reader(void) void writer(void)
{ {
mutex_lock(&m); mutex_lock(&m);
if (writers) writers++;
cond_wait(&turn, &m); while (reading || writing)
while (writing) cond_wait(&turn, &m);
cond_wait(&turn, &m); writing++;
reading++; mutex_unlock(&m);

mutex_unlock(&m);

/* Writing here */
/* Reading here */

mutex_lock(&m);

mutex_lock(&m); writing--;
reading--; writers--;
cond_signal(&turn); - cond_signal(&turn);
mutex_unlock(&m); mutex_unlock(&m);

} }

Only unblocks one thread at a time;
Inefficient if many readers are waiting

Easy solution: Wake everyone

void reader(void)

{

mutex_lock(&m);

1f (writers)
cond_wait(&turn, &m);

while (writing)
cond_wait(&turn, &m);

reading++;

mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_broadcast(&turn);
mutex_unlock(&m);

void writer(void)

{
mutex_lock(&m);
writers++;
while (reading || writing)
cond_wait(&turn, &m);
writing++;

mutex_unlock(&m);
/* Writing here */

mutex_lock(&m);
writing--;
writers--;
- cond_broadcast(&turn);
mutex_unlock(&m);
}

Semaphores vs. Condition Variables

Semaphore Condition Variable
* Integer value (2 0) * No value
* Wait doesn’t always block * Wait always blocks
* Signal either un-blocks thread * Signal either un-blocks thread
or increments counter or is lost
* If signal releases thread, both * If signal releases thread, only
may continue concurrently one continues

= Need to hold mutex lock
to proceed

= Other thread is released
from waiting on condition,
but still has to wait to
obtain the mutex again

Conclusion

Condition variables

* convenient way of signaling general-purpose events between threads

Common implementation: “monitors”

* An object which does the locking/unlocking for you when its methods
are called

* See synchronized keyword in Java

Beware pitfalls...

Pitfalls

signal() before wait()
* Waiting thread will miss the signal

Fail to lock mutex before calling wait()

* Might return error, or simply not block

if (lcondition) wait(); instead of while (!condition) wait();
* condition may still be false when wait returns!

* can lead to arbitrary errors (e.g., following NULL pointer, memory
corruption, ...)

Forget to unlock mutex
* uh oh...

Forgetting to unlock the mutex

void reader(void)
{
mutex_lock(&m);
1f (writers)
cond_wait(&turn, &m);
while (writing)
cond_wait(&turn, &m);
reading++;
mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_broadcast(&turn);
B
}

while (1) { reader(Q) };

After running once,

next time reader calls
mutex_lock(&m):

Waiting for

reader
thread

held by

20

Forgetting to unlock the mutex

After running once,

next time reader calls
mutex_lock(&m):

Waiting for

DEADLOCK

thread waits forever m

for event that will thread
never happen \/

held by

reader

21

The
Dining Philosophers
Problem

Drinking Philosophers

Dining Philosophers

Lociererte

24

Dining Philosophers

N philosophers and N forks
Philosophers eat, think
Eating needs 2 forks

Pick up one fork at a time

Each fork used by one person at a time

25

Dining Philosophers: Take 1

define N 5

void philosopher (int i) ({
while (TRUE) ({
think () ;
lock fork(i);
lock fork((i+l)3N);

eat(); /* yummy */

unlock_fork(i);
unlock_fork((i+1)%N);

Does this work!?

26

Dining Philosophers: Take 1

define N 5

void philosopher (int i) { @5
while (TRUE) ({ % ﬁ
think () ;
mmmesuunds) 1ock fork (i) ; DEADLOCK
lock fork((i+l)3N); !

eat(); /* yummy */ W@@ m

unlock_fork(l),
unlock_fork((i+1)%N);

27

Progress diagram

Thread 2 Represents tst.ate of
system (position of each
I ° ° o o o of the two threads in their
executions)
| o (] ® . . -
(= = Instructions in critical
sections (wrt to some
. i y ¢ ¢ I ° shared variable) should
critical < . be i | d
section Unsafe region not be interleave
[o o o | [
Sets of states where such
- R - - . interleaving occurs form
unsafe regions
L @ @ @ @ o— Thr.ead I
N y
N

critical section

Progress diagram

critical
section

Thread 2

<

safe

]

Unsafe region

]
|

*’

unsafe

critical section

@ “— Thread |

But, any trajectory that
goes up and to the
right might occur...

29

Reminder: process diagram

Thread 2
rea Mutexes provide mutually

exclusive access to shared
variable by surrounding
critical section with wait and
post operations on
semaphore s (initially set to

1)

post(s)

p] - ° -1

Unsafe region

p ° - o -1 o -1

0 Semaphore invariant
creates a forbidden
region
that encloses the unsafe
1 1 0 0 0 0 1 : region that must not be

" entered by any trajectory.
1 1 0 Io 0 0 1 1

wait(s)

[]
®
[]
[]

Thread |
ﬂ wait(s) post(s)

Initially

s = |

Two shared resources

Descartes
U(fo)]
Forbidden region
for f,
U(fl)]
L(fo) —
L(f,) —

f,=f,=|

, | | — Awristotle
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

31

Two shared resources

Any trajectory that enters

Descartes the deadlock region will
eventually reach the
i) — Deadlock dc.eadlock state, waiting for
(fo) _ . either f, or f, to become
Forbidden region state
. nonzero
Ul Other trajectories luck out
and skirt the deadlock
region
L(f,) —
(O) .
Deadock | FOrbidden region Unfortunate fact: deadlock
L(f,) — region forf: is often nondeterministic
(race)
Aristotle

| | | |
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

fo

fi

32

Deadlock: definition

There exists a cycle of processes such that each process

cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Example:

* Pl holds resource Rl & is waiting to acquire R2 before unlocking them
* P2 holds resource R2 & is waiting to acquire R| before unlocking them

33

Resource allocation graphs

Nodes
* Circle: Processes @ R2
* Square: Resources Pl is P2
using requested
Arcs RI R2
* From resource to process = R @

resource assigned to process

* From process to resource =
process requests (and is waiting
for) resource

Resource allocation graphs

Placqwres @ Pl requests

Nodes

* Circle: Processes
* Square: Resources

Deadlock

* Processes Pl and P2 are in

deadlock over resources R
and r2

RI

P2
requests R

Circular
wait

P2
acquires R2

35

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution’ ...

define N 5

void philosopher (int i) {

while (TRUE) { -
think () ;
lock fork(i);
lock fork((i+1)%N) ;
eat(); /* yummy */
unlock fork (i) ;
unlock fork((i+1l) %3N) ;

} A\"é‘tvﬁ”e

36

Dining Philosophers

resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

* Result: Request edges

37

Dining Philosophers
resource allocation graph

If we use the trivial
broken “solution’...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

* Result: Request edges

* Everyone succeeds!

38

Dining Philosophers
resource allocation graph

If we use the trivial
broken “solution’...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

* Result: Request edges

* Everyone succeeds!

* Result: Assighment edges

Locisrorte

39

Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assighment edges

Everyone tries to pick up
right fork

* Result: Request edges

Locisrorte

40

Dining Philosophers
resource allocation graph

Everyone tries to pick up
left fork

* Result: Request edges
* Everyone succeeds!

* Result: Assighment edges

Everyone tries to pick up
right fork

* Result: Request edges
* DEADLOCK

Locisrorte

41

Idea: change the order

Descartes

U(fo) _ Deadlock

Forbidden region state
for f,
Old order
U(f)) - /
®

S Forbidden region
region for f;

L(fo)]

L(f|)]

, | | — Awristotle
Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

Idea: change the order

Forbidden region

forf,

Descartes
U(f,)
U(fo)]
L(f|) ~
Forbidden region
for f,
L(fo) o

Aristotle

Lock(f,) Lock(f,) Unlock(f,) Unlock(f,)

New order

Deadlock impossible!

43

Deadlock
* Cycle of processes / threads, each waiting on the next
* Modeled by cycle in resource allocation graph

* Often nondeterministic, tricky to debug

Next: dealing with deadlocks
* “change the order” was a nice trick... but why did it work?
* Is there a simple technique that will work always?

* Are there other ways of avoiding deadlocks?

44

