
1

Condition Variables

Deadlock

CS 241

March 17, 2014

University of Illinois

Slides adapted in part from material accompanying Bryant & O’Hallaron,
“Computer Systems: A Programmer's Perspective”, 2/E

2

Today

Condition Variables (reminder)
•  Reader-Writer Problem: a better solution

Deadlock
•  Dining Philosophers Problem

3

Condition Variables (Reminder)

4

Synchronization primitives

Mutex locks
•  Used for exclusive access to a shared resource (critical section)
•  Operations: Lock, unlock

Sempahores
•  Generalization of mutexes: Count number of available “resources”
•  Wait for an available resource (decrement), notify availability

(increment)
•  Example: wait for free buffer space, signal more buffer space

Condition variables
•  Represent an arbitrary event
•  Operations: Wait for event, signal occurrence of event
•  Tied to a mutex for mutual exclusion

5

Condition variables

Goal: Wait for a specific event to happen
•  Event depends on state shared with multiple threads

Solution: condition variables
•  “Names” an event
•  Internally, is a queue of threads waiting for the event

Basic operations
•  Wait for event
•  Signal occurrence of event to one waiting thread
•  Signal occurrence of event to all waiting threads

Signaling, not mutual exclusion
•  Condition variable is intimately tied to a mutex

6

Condition variable “Hello world?”

[see code, in class and on web site]

7

Readers-Writers
with Condition Variables

8

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:
•  Reader threads only read the object
•  Writer threads modify the object
•  Writers must have exclusive access to the object
•  Unlimited number of readers can access the object

Reader Writer
Reader OK No
Writer No No T

hr
ea

d
1

Thread 2

9

sem_wait(&w);  
 
/* Critical section */  
/* Writing here */  
 
sem_post(&w);  

Writers:

	
int readcnt; /* Initially = 0 */  
sem_t mutex, w; /* Both initially = 1 */  

Shared:

Recall: Semaphore solution

sem_wait(&mutex);  
readcnt++;  
if (readcnt == 1) /* First reader in */  
 sem_wait(&w); /* Lock out writers */  
sem_post(&mutex);  
 
/* Main critical section */  
/* Reading would happen here */  
 
sem_wait(&mutex);  
readcnt--;  
if (readcnt == 0) /* Last out */  
 sem_post(&w); /* Let in writers */  
sem_post(&mutex);

Readers:

(full code
online)

10

Condition variable solution

Idea:
•  If it’s safe, just go ahead and read or write
•  Otherwise, wait for my “turn”

Initialization:
/* Global variables */  
pthread_mutex_t m;  
pthread_cond_t turn; /* Event: it's our turn */  
int writing;  
int reading;  
  
void init(void) {  
 pthread_mutex_init(&m, NULL);  
 pthread_cond_init(&turn, NULL);  
 reading = 0;  
 writing = 0;  
}  

11

Condition variable solution

void reader(void)  
{  
 mutex_lock(&m);  
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

(Note: “pthread_” prefix removed from all
synchronization calls for compactness)

12

Familiar problem: Starvation

void reader(void)  
{  
 mutex_lock(&m);  
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

(Note: “pthread_” prefix removed from all
synchronization calls for compactness)

13

Idea: take turns

If a writer is waiting, then reader should wait its turn
•  Even if it’s safe to proceed (only readers are in critical section)

Requires keeping track of waiting writers

/* Global variables */  
pthread_mutex_t m;  
pthread_cond_t turn; /* Event: someone else's turn */  
int reading;  
int writing;  
int writers;  
  
void init(void) {  
 pthread_mutex_init(&m, NULL);  
 pthread_cond_init(&turn, NULL);  
 reading = 0;  
 writing = 0;  
 writers = 0;  
}

14

Taking turns

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

15

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

Another problem :-(

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

Only unblocks one thread at a time;
Inefficient if many readers are waiting

16

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}  

Easy solution: Wake everyone

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}

17

Semaphores vs. Condition Variables

Semaphore
•  Integer value (≥ 0)
•  Wait doesn’t always block
•  Signal either un-blocks thread

or increments counter
•  If signal releases thread, both

may continue concurrently

Condition Variable
•  No value
•  Wait always blocks
•  Signal either un-blocks thread

or is lost
•  If signal releases thread, only

one continues
!  Need to hold mutex lock

to proceed
!  Other thread is released

from waiting on condition,
but still has to wait to
obtain the mutex again

18

Conclusion

Condition variables
•  convenient way of signaling general-purpose events between threads

Common implementation: “monitors”
•  An object which does the locking/unlocking for you when its methods

are called
•  See synchronized keyword in Java

Beware pitfalls...

19

Pitfalls

signal() before wait()
•  Waiting thread will miss the signal

Fail to lock mutex before calling wait()
•  Might return error, or simply not block

if (!condition) wait(); instead of while (!condition) wait();

•  condition may still be false when wait returns!
•  can lead to arbitrary errors (e.g., following NULL pointer, memory

corruption, ...)

Forget to unlock mutex
•  uh oh...

20

Forgetting to unlock the mutex

m
reader
thread

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}	
	
while (1) { reader() };

Waiting for

held by

After running once,
next time reader calls
mutex_lock(&m):

21

Forgetting to unlock the mutex

m
reader
thread

Waiting for

held by

After running once,
next time reader calls
mutex_lock(&m):

DEADLOCK
thread waits forever
for event that will
never happen

22

The
Dining Philosophers

Problem

23

Drinking Philosophers

“John Stuart Mill,
of his own free will,
On half a pint of shandy
was particularly ill ...”

24

Caccamo!

Dining Philosophers

25

Dining Philosophers

N philosophers and N forks

Philosophers eat, think

Eating needs 2 forks

Pick up one fork at a time

Each fork used by one person at a time

26

Dining Philosophers: Take 1

Does this work?

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);

 eat(); /* yummy */

 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

27

Dining Philosophers: Take 1

DEADLOCK
!

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);

 eat(); /* yummy */

 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

28

Progress diagram
Represents state of
system (position of each
of the two threads in their
executions)

Instructions in critical
sections (wrt to some
shared variable) should
not be interleaved

Sets of states where such
interleaving occurs form
unsafe regions

Thread 1

Thread 2

critical section

critical
section Unsafe region

29

Progress diagram

Thread 1

Thread 2

Unsafe region

But, any trajectory that
goes up and to the
right might occur...

unsafe

safe

critical section

critical
section

30

Unsafe region

Reminder: process diagram
Mutexes provide mutually
exclusive access to shared
variable by surrounding
critical section with wait and
post operations on
semaphore s (initially set to
1)

Semaphore invariant
creates a forbidden
region
that encloses the unsafe
region that must not be
entered by any trajectory.

wait(s) post(s)
Thread 1

Thread 2

wait(s)

post(s)

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

31

Two shared resources

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

f0=f1=1

32

Two shared resources
Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for
either f0 or f1 to become
nonzero

Other trajectories luck out
and skirt the deadlock
region

Unfortunate fact: deadlock
is often nondeterministic
(race)

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

Deadlock
state

Deadlock
region

f0=f1=1

33

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Example:
•  P1 holds resource R1 & is waiting to acquire R2 before unlocking them
•  P2 holds resource R2 & is waiting to acquire R1 before unlocking them

34

R1

R2 P1

P2

Resource allocation graphs

Nodes
•  Circle: Processes
•  Square: Resources

Arcs
•  From resource to process =

resource assigned to process
•  From process to resource =

process requests (and is waiting
for) resource

P1 is
using
R1

P2
requested

R2

35

R1 R2

P1

P2

P1 requests
R2

P2
acquires R2

P2
requests R1

P1 acquires
R1

Resource allocation graphs

Nodes
•  Circle: Processes
•  Square: Resources

Deadlock
•  Processes P1 and P2 are in

deadlock over resources R1
and r2

Circular
wait

36

If we use the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 lock_fork(i);
 lock_fork((i+1)%N);
 eat(); /* yummy */
 unlock_fork(i);
 unlock_fork((i+1)%N);
 }
}

Dining Philosophers
resource allocation graph

37

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

P3

P4 P5

P1

P2

R1 R2

R3

R4

R5

38

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

39

Dining Philosophers
resource allocation graph
If we use the trivial
broken “solution”...

One node per
philosopher

One node per fork

Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

40

Dining Philosophers
resource allocation graph
Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

Everyone tries to pick up
right fork

•  Result: Request edges

41

Dining Philosophers
resource allocation graph
Everyone tries to pick up
left fork

•  Result: Request edges

•  Everyone succeeds!

•  Result: Assignment edges

Everyone tries to pick up
right fork

•  Result: Request edges

•  DEADLOCK

42

Idea: change the order

Old order

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f1)

L(f1)

L(f0)

U(f0)
Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

Deadlock
state

Deadlock
region

f0=f1=1

43

Idea: change the order

New order

Aristotle

Descartes

Lock(f0) Unlock(f0) Lock(f1) Unlock(f1)

U(f0)

L(f0)

L(f1)

U(f1)

Forbidden	
 region	

for	
 f0	

Forbidden	
 region	

for	
 f1	

f0=f1=1

Deadlock impossible!

44

Summary

Deadlock
•  Cycle of processes / threads, each waiting on the next
•  Modeled by cycle in resource allocation graph
•  Often nondeterministic, tricky to debug

Next: dealing with deadlocks
•  “change the order” was a nice trick... but why did it work?
•  Is there a simple technique that will work always?
•  Are there other ways of avoiding deadlocks?

