Synchronization

VOO

Copyright ©: University of lllinois CS 241 Staft

Software-based
Mutual Exclusion

Would a software-based solution work?

Two Flag and Turn Mutual
Exclusion

int owner[2]={false, false};

int turn;

owner [my process id] true;

turn = other process id;
while (owner[other process id] and
turn == other process id) {

/* wait your turn */

}

access shared wvariables;

owner [my process id] = false;

Copyright ©: University of lllinois CS 241 Staff 3]

Two Flag and Turn Mutual
Exclusion

owner[0] = fgXse true
] 2]1={fal fal ;
%nt zwner[]={talse, false} owner[l] = f3Xse true
in urn;

turn =) X 0
owner [my process id] = true; -

turn = other process id;
while (owner[other process id] and

turn == other process id) ({
/* wait your turn */ PrOgreSS
} and mutual
access shared variables; eXCIUSiOn!
owner [my process 1d] = false;

Peterson’s Solution

Copyright ©: University of lllinois CS 241 Staff 4]

Are we done?

Peterson’ s algorithm works

o It guarantees mutual exclusion

o no thread can monopolize use of shared resource,
because each thread has to give an opportunity to the
other thread by setting “turn=other_process_id” before
each attempt to enter its critical section

But....

Copyright ©: University of lllinois CS 241 Staff

In case you test Peterson sol.

If everything worked...
$./peterson

Final wvalue: 100000

mcaccamo$./peterson
Final value: 100000
mcaccamo$./peterson
Final wvalue: 100000
mcaccamo$./peterson
Final value: 99999
mcaccamo$./peterson
Final wvalue: 100000

| am confused...

Copyright ©: University of lllinois CS 241 Staff

The perilous landscape of
relaxed memory multicores

Required assumptions for correctness of Peterson’s alg.:

o We consider only two threads

o [Topic for computer architecture class] CPU does not perform
memory operations in an out-of-order fashion. The programmer needs
to rely on strict ordering for the memory operations within a thread.

Guess what... x86 performs the following re-ordering:
Loads may be reordered with older stores to different locations
=> Peterson’s algorithm is broken on x86. Test it yourself.....

Problem: software-based solutions are slow

=>» Solution: leverage CPU atomic operations like
test-and-set

Copyright ©: University of lllinois CS 241 Staff 7]

Hardware support for
mutual exclusion

We need hardware support: an atomic operation
like test-and-set is needed to implement mutual
exclusion.

Copyright ©: University of lllinois CS 241 Staff

%‘,

"7"{

f*)f:—}/
{I
fox

TestAndSet function

int TestAndSet (int* plock) atomic {
int initial;
initial = *plock;
*plock = 1;
return initial;

atomic = executed in a single shot
without any interruption

Note: this pseudo-code only serves to help explain the behavior of test-and-set;

atomicity requires explicit hardware support and hence can't be implemented

as a simple C function. ‘
Copyright ©: University of lllinois CS 241 Staff 9]

25
TestAndSet function i

A\

volatile long lock = 0; // lock is initially set to free

//
//
//
//
//
//

//

Calling TestAndSet (&lock) sets lock to 1 and returns the old value of lock.
So, 1if lock is zero, then TestAndSet (&lock) returns zero and sets lock to
one. This means the lock has been succesfully acquired. On the other hand,
if the lock had already been set to one by another process or thread,
then 1 would be returned. This would indicate to the caller that the lock
is already being held by another process or thread.

This code is gcc/linux/intel x86 specific.

long TestAndSet (volatile long * lock) {

long retval;

// Atomically exchange value of register %0 with lock. The

// atomicity of xchg is what guarantees that at most one

// process or thread can be holding the lock at any point in time.

asm volatile
"movl $Ox1 %0 \n"
"xchg %0, (%1) \n"
"=&r" (retval) "r" (lock) : "memory");

return retval;

S

Ko
TestAndSet function LT

int TestAndSet (int *lock)
o Pros:
Very fast to entry to unlocked region
Guarantees safety & progress
o Cons:
Wastes CPU cycles if used with busy waiting (spin lock)

Extremely high memory (i.e., bus) traffic if used with
busy waiting

/

“‘"7<

.

TestAndSet can be used to implement higher-level
synchronization constructs.

Copyright ©: University of lllinois CS 241 Staff 11]

Back to the counter example

compile with gcc -m32 —Ipthread -o test test.c

#include <stdio.h>

#include <pthread.h>
#define NUM THREADS 2 pthread t threads[NUM THREADS] ;

int main(void) {

int i, res;
// lock is initially set to free
volatile long lock = 0; for (i=0; i < NUM THREADS; i++) {
res=pthread create(&threads[i],
NULL, worker, NULL);

int ent = 0;

void * worker(void *ptr) { }
int i; for (i=0; i < NUM THREADS; i++) {
for (i = 0; i < 50000; i++) {

// i til it lock res=pthread join(threads[i] , NULL) ;
spin until i ocks -

while (TestAndSet (&lock)) {}; }
// locked in mutual exclusion /* Print result */
cnt++; printf ("Final value: %d\n", cnt);

lock = 0; // lock is released }

}
pthread exit (NULL) ; :
} Copyright ©: University of lllinois CS 241 Staff 12]

Simple implementation of P(s)

P(s) and V(s) need to execute atomically.

How can | implement them?
Solution: use TestAndSet!

#include <sched.h>

typedef struct SEMAPHORE ({
volatile long lock;
volatile long sem;

} semaphore;

Simple implementation of
a semaphore without a
queue of blocked threads

Copyright ©: U

void P (semaphore *p) {
while (1) {
while (TestAndSet (&p->1lock))
sched yield();
// locked in mutual exclusion
1f (p—->sem > 0) {

p->sem——;
p->lock = 0;//lock is released
break; // entering crit. sec.

}
p->lock = 0; //lock is released

sched yield(); //relinquish CPU

}
}

Simple implementation of V(s)

How can | implement V(s)?
Solution: use TestAndSet!

void V (semaphore *p) {
while (TestAndSet (&p—->1ock))
sched yield() ;

// locked in mutual exclusion
p—>semt++;
p->lock = 0; //lock is released

Copyright ©: University of lllinois CS 241 Staff

Back to the counter example:
solution with primitives P & V

#include <stdio.h>

#include <pthread.h> int main(void) {

#include <sched.h> pthread t threads[NUM THREADS] ;
#define NUM THREADS 2 int i, res;

semaphore s = {.lock =0, .sem =1};

for (i=0; i < NUM THREADS; i++) {

res=pthread create(&threads[i],

int ecnt = 0;

void * worker(void *ptr) { NULL, worker, NULL) ;

int i; }

for (i = 0; i < 50000; i++) { for (i=0; i < NUM THREADS; i++) {
P(&s) ; o] res=pthread join(threads[i] , NULL) ;
cnt++; // critical section -
V(&s) ; }

} /* Print result */

pthread exit (NULL) ; printf ("Final value: %d\n", cnt);

} }

Copyright ©: University of lllinois CS 241 Staff 15]

Synchronization Primatives

Pthread mutex
o Permits only one thread to execute a critical section

Posix Semaphore

o Permits up to a limited number of threads to execute a
critical section

Pthread condition variable

o Wait for event
o Signal occurrence of event to one waiting thread

o Broadcast occurrence of event to all waiting threads

Copyright ©: University of lllinois CS 241 Staff 16]

Creating a mutex

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);

Initialize a pthread mutex: the mutex is initially unlocked
Returns
o 0 on success

o Error number on failure

EAGAIN: The system lacked the necessary resources; ENOMEM: Insufficient
memory ; EPERM: Caller does not have privileges; EBUSY: An attempt to re-
initialise a mutex; EINVAL: The value specified by attr is invalid

Parameters

o mutex: Target mutex
O attr:

NULL: the default mutex attributes are used
Non-NULL: initializes with specified attributes

Copyright ©: University of lllinois CS 241 Staff 17]

Creating a mutex

Default attributes

o Use PTHREAD MUTEX INITIALIZER
Statically allocated

Equivalent to dynamic initialization by a call to
pthread mutex init () with parameter
attr specified as NULL

No error checks are performed

Copyright ©: University of lllinois CS 241 Staff 18]

Destroying a mutex

int pthread mutex destroy(pthread mutex t *mutex);
Destroy a pthread mutex
Returns
o 0 on success

o Error number on failure

EBUSY: Mutex is locked by a thread; EINVAL: The value specified by mutex is
invalid

Parameters
o mutex: Target mutex

Copyright ©: University of lllinois CS 241 Staff

Locking/unlocking a mutex

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
Returns
o 0 on success

o Error number on failure

EBUSY: Mutex is already locked; EINVAL: The value specified by mutex is
invalid; EDEADLK: The current thread already owns the mutex; EPERM: The
current thread does not hold a lock on mutex.

=>» If a signal is delivered to a thread while that thread is waiting for a
mutex, when the signal handler returns, the wait resumes.
pthread_mutex_lock() does not return EINTR!

Copyright ©: University of lllinois CS 241 Staff 20]

Back to the counter example:
solution with pthread mutex

#include <stdio.h>

#include <pthread.h>
#define NUM THREADS 2 pthread t threads[NUM THREADS] ;

int main(void) {

int i, res;
pthread mutex t mutex =
PTHREAD MUTEX INITIALIZER;

_ for (i=0; i < NUM THREADS; i++) {
int cnt = 0; _

res=pthread create(&threads[i],

void * worker(void *ptr) { NULL, worker, NULL) ;
int i; }
for (i = 0; i < 50000; i++) { for (i=0; i < NUM THREADS; i++) {

pthread_muteg_}ock(&mutéx); res=pthread join(threads[i] , NULL) ;
cnt++; // critical section -

pthread mutex unlock (&mutex) ;)
} /* Print result */

pthread exit (NULL) ; printf ("Final value: %d\n", cnt);
} }

Copyright ©: University of lllinois CS 241 Staff 21]

