
Copyright ©: University of Illinois CS 241 Staff 1

Introduction to Synchronization

Conflict exam

n  Tuesday March, 11th morning @ 8am

n  If you have Physics 214 Final on March 10th, you
can take cs241 conflict exam next day.

n  You need to register for the conflict exam by
sending an email to cs241help with subject “conflict
exam” and explaining the reason of your conflict

n  We will double check each request making sure it is
a valid conflict. Don’t fake it, we will find out…

Copyright ©: University of Illinois CS 241 Staff 2

Do we really need
synchronization with threads?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <assert.h>
#define NUM_THREADS 2

int cnt = 0;

void * worker(void *ptr) {
 int i;
 for (i = 0;
 i < 50000; i++)
 cnt++;
 pthread_exit(NULL);
}

int main(void) {
 pthread_t threads[NUM_THREADS];
 int i, res;

 for (i = 0; i < NUM_THREADS; i++) {
 res = pthread_create(&threads[i],
 NULL, worker, NULL);
 }
 for (i = 0; i < NUM_THREADS; i++) {
 res = pthread_join(threads[i], NULL);
 }
 /* Print result */
 printf("Final value: %d\n", cnt);
}

Copyright ©: University of Illinois CS 241 Staff 3

What is the output?

Do threads conflict in practice?
n  If everything worked...
 $./20-counter
 Final value: 100000

Output

mcaccamo$./test1
Final value: 62354
mcaccamo$./test1
Final value: 57718
mcaccamo$./test1
Final value: 55632
mcaccamo$./test1
Final value: 50801
 Copyright ©: University of Illinois CS 241 Staff 4

Do threads conflict in practice?

n  Q: What do you think is the minimum

final value?

Copyright ©: University of Illinois CS 241 Staff 5

Deconstructing the Counter

Copyright ©: University of Illinois CS 241 Staff 6

 movl (%rdi),%ecx
 movl $0,%edx
 cmpl %ecx,%edx
 jge .L13

.L11:
 movl cnt(%rip),%eax
 incl %eax
 movl %eax,cnt(%rip)
 incl %edx
 cmpl %ecx,%edx
 jl .L11

.L13:

Corresponding assembly code

for (i=0; i < 50000; i++)
 cnt++;

C code for counter loop for thread i

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)
Store cnt (Si)

Critical section:
reading or writing
shared variable

What is wrong with the shared
counter?

n  We just saw that processes / threads
can be preempted at arbitrary times
¡  The previous example might work, or not

Copyright ©: University of Illinois CS 241 Staff 7

Thread 1:

x++;

Thread 2:

x++;

Shared state:

int x=0;

Let’s look at possible concurrent
interleaving of thread code

Incrementing Variables

n  How is x++ compiled?
n  A possible sequence of compiled pseudo-

code is:

 register1 = x (atomic)
 register1 = register1 + 1 (atomic)
 x = register1 (atomic)

Copyright ©: University of Illinois CS 241 Staff 8

9 Copyright ©: University of Illinois CS 241 Staff

What could happen?

Thread 1: x++; Thread 2: x++; r1 r2 x

x++: r1 = x
 r1 = r1 + 1
 x = r1

10 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

11 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

12 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

13 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

r2 = x 1 1

14 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

r2 = x 1 1

r2 = r2+1 2 1

15 Copyright ©: University of Illinois CS 241 Staff

This could happen...

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

r2 = x 1 1

r2 = r2+1 2 1

x = r2 2 2

16 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

17 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

18 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

19 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

r2 = r2+1 1 1 0

20 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

r2 = r2+1 1 1 0

x = r1 1 1 1

21 Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

Thread 1: x++; Thread 2: x++; r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

r2 = r2+1 1 1 0

x = r1 1 1 1

x = r2 1 1 1

Introducing: Critical Section
void * worker(void *ptr) {

 while (true) {
 ENTER CRITICAL SECTION
 Access shared variable;
 LEAVE CRITICAL SECTION
 Do other work
 }

}

22 Copyright ©: University of Illinois CS 241 Staff

n  Instructions inside the critical section should not be
interleaved with other threads’ critical section.

n  How do you enforce mutually exclusive execution of critical
sections?

è Classic solution: Dijkstra’s P and V operations on semaphores

Introducing: P(s) and V(s)

23 Copyright ©: University of Illinois CS 241 Staff

n  A semaphore s is a non-negative integer that can only be
manipulated by P and V operations

n  P(s): (simple version)
 while(1) {[if (s>0) {s--; break;}] usleep(usec); }

n  V(s): (simple version)
 [s++;]

n  OS guarantees that instructions within brackets [] are
executed atomically

Semaphore s=1; // semaphore initialized as unlocked

Thread {

 while (true) {
 P(s)
 Access shared variable; ! critical section
 V(s)
 Do other work
 }

}

24 Copyright ©: University of Illinois CS 241 Staff

n  Semaphore s guarantees the mutually exclusive execution of
each critical section it is protecting.

è it prevents race conditions among concurrent threads

Introducing: P(s) and V(s)

Critical Section Requirements

n  Mutual Exclusion
n  Progress
n  Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 25

Critical Section Requirements

n  Mutual Exclusion
¡  At most one thread in critical section
¡  No other thread may execute within the

critical section while a thread is in it
n  Progress
n  Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 26

Critical Section Requirements

n  Mutual Exclusion
n  Progress

¡  If no thread is executing inside its critical
section and some threads are trying to
get into their critical section, then one of
them should be able to enter its critical
section

n  Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 27

Critical Section Requirements

n  Mutual Exclusion
n  Progress
n  Bounded Wait

¡  A thread requesting entry to a critical
section should only have to wait for a
bounded number of other threads to enter
and leave the critical section

Copyright ©: University of Illinois CS 241 Staff 28

Critical Section Requirements

n  Mutual Exclusion
n  Progress
n  Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 29

Must ensure these requirements without
assumptions about number and speed of

CPUs, or scheduling policy!

Summarizing Critical Sections

Thread A

Thread B

A enters critical section A leaves critical section

B attempts to
enter critical
section

B enters
critical
section

B leaves
critical
section

T1 T2 T3 T4

B is blocked

30 Copyright ©: University of Illinois CS 241 Staff

Threads A and B have both a critical section
guarded by the same semaphore S

