Introduction to Synchronization

VOO

Copyright ©: University of Illinois CS 241 Staft

Conflict exam

Tuesday March, 11t morning @ 8am

If you have Physics 214 Final on March 10", you
can take cs241 conflict exam next day.

You need to register for the conflict exam by
sending an email to cs241help with subject “conflict
exam” and explaining the reason of your conflict

We will double check each request making sure it is
a valid conflict. Don’t fake it, we will find out...

Copyright ©: University of Illinois CS 241 Staff

Do we really need
synchronization with threads?

#include <stdio.h> int main (void) {

#include <stdlib.h> pthread t threads[NUM THREADS] ;
#include <pthread.h>
#include <assert.h>
#define NUM THREADS 2

int i, res;

for (i = 0; i < NUM THREADS; i++) ({
res = pthread create(&threads[i],
int cnt = 0; NULL, worker, NULL) ;

void * worker(void *ptr) {

int i; for (i = 0; i < NUM THREADS; i++) {
for (i = 0; res = pthread join(threads[i], NULL);
i < 50000; i++) }
cnt++; /* Print result */

pthread exit (NULL) ; printf ("Final value: %d\n", cnt);

What is the output?

Copyright ©: University of Illinois CS 241 Staff 3]

Do threads conflict in practice?

If everything worked...
$./20-counter
Final wvalue: 100000

mcaccamo$./testl
Final value: 62354
mcaccamo$./testl
Final value: 57718
mcaccamo$./testl
Final value: 55632
mcaccamo$./testl
Final value: 50801

Copyright ©: University of Illinois CS 241 Staff

[Do threads conflict in practice?

Q: What do you think is the minimum
final value?

Copyright ©: University of Illinois CS 241 Staff

Deconstructing the Counter

C code for counter loop for thread i

for (i=0; i < 50000; i++)
cnt++;

Corresponding assembly code

movl (%rdi) ,b %$ecx
movl $0,%edx . Head (Hi)
cmpl %ecx, Sedx
jge .L13

movl cnt (%rip),%eax Load cnt (L)) Critical section:

incl %eax > Update cnt (U) reading or writing

movl %eax,cnt(%rip) J Store cnt (S)) shared variable
i Vo A T-Yo b

cmpl %ecx, Sedx _
.L13:

y g
Copyright ©: University of Illinois CS 241 Staff 6]

What is wrong with the shared
[Counter’?

We just saw that processes / threads
can be preempted at arbitrary times

o The previous example might work, or not

Shared state: Thread 1: Thread 2:

int x=0; X++; X++;

Let’s look at possible concurrent
interleaving of thread code

Copyright ©: University of Illinois CS 241 Staff

[Incrementing Variables

How is x++ compiled?

A possible sequence of compiled pseudo-
code is:

registerl = x (atomic)
registerl = registerl + 1 (atomic)
X = registerl (atomic)

Copyright ©: University of Illinois CS 241 Staff 8]

x++: rl = x

rl =rl + 1
[What could happen? ===
Thread 1: x++; |Thread 2: x++; |rl |r2

Copyright ©: University of lllinois CS 241 Staff

[This could happen...

Thread 1: x++;

Thread 2: x++;

rl

r2

rl = x

10

Copyright ©: University of lllinois CS 241 Staff

[This could happen...

Thread 1;: x++; |Thread 2; x++; rl |r2
rl = x 0
rl = rl+l 1

11

Copyright ©: University of lllinois CS 241 Staff

[This could happen...

Thread 1: x++; |Thread 2: x++; |rl |r2 |x

rl = x 0 0

rl = rl+l 1 0

x =rl 1 1
12 Copyright ©: University of lllinois CS 241 Staff

[This could happen...

Thread 1: x++; |Thread 2: x++; |rl |[r2
rl = x 0
rl = rl+l 1
x =rl 1
r2 = x 1

This could happen...

Thread 1: x++; |[Thread 2: x++; |rl |r2
rl = x 0
rl = rl+l 1
x =rl 1
r2 = x 1
r2 = r2+l 2

14

Copyright ©: University of lllinois CS 241 Staff

This could happen...

Thread 1: x++; |[Thread 2: x++; |rl |r2

rl = x 0

rl = rl+l 1

x =rl 1
r2 = x 1
r2 = r2+l 2
X = r2 2

15

Copyright ©: University of lllinois CS 241 Staff

[But this could happen too!

Thread 1: x++;

Thread 2: x++;

rl

r2

rl = x

0

16

Copyright ©: University of lllinois CS 241 Staff

[But this could happen too!

Thread 1;: x++; |Thread 2;: x++; rl |[r2 |x

rl = x 0 0

rl = r1+l 1 0

17 Copyright ©: University of lllinois CS 241 Staff

[But this could happen too!

Thread 1: x++; |Thread 2;: x++; rl |[r2 |x

rl = x 0 0

rl = rl1+l 1 0

r2 = x 1 0 0

18 Copyright ©: University of lllinois CS 241 Staff

[But this could happen too!

Thread 1: x++; |Thread 2: x++; |[rl |r2
rl = x 0
rl = rl+l 1
r2 = x 1 0
r2 = r2+1 1 1
5 Gopyright ©: Universiy of llinois CS 241 Staff

[But this could happen too!

Thread 1: x++; |[Thread 2: x++; |rl
rl = x 0
rl = rl+l 1
r2 = x 1
r2 = r2+l1 1
x =rl 1

20 Copyright ©: University of lllinois CS 241 Staff

[But this could happen too!

Thread 1: x++; |Thread 2: x++; |rl
rl = x 0
rl = ril+l 1
r2 = x 1
r2 = r2+1 1
x =rl 1
X = r2 1

21 Copyright ©: University of lllinois CS 241 Staff

Introducing: Critical Section

void * worker (void *ptr) {
while (true) {
ENTER CRITICAL SECTION
Access shared variable;
LEAVE CRITICAL SECTION
Do other work

}

}
Instructions inside the critical section should not be

interleaved with other threads’ critical section.

How do you enforce mutually exclusive execution of critical
sections?

=>» Classic solution: Dijkstra’s P and V operations on semaphores

Copyright ©: University of Illinois CS 241 Staff 22]

Introducing: P(s) and V(s)

A semaphore s is a non-negative integer that can only be
manipulated by P and V operations

P(s): (simple version)
while(1) {[if (s>0) {s--; break;}] usleep(usec); }

V(s): (simple version)
[s++;]

OS guarantees that instructions within brackets [] are
executed atomically

Copyright ©: University of Illinois CS 241 Staff

Introducing: P(s) and V(s)
Semaphore s=1; // semaphore initialized as unlocked

Thread {
while (true) {
P(s)
Access shared variable;
V(s)
Do other work

€ critical section

Semaphore s guarantees the mutually exclusive execution of
each critical section it is protecting.
=» it prevents race conditions among concurrent threads T

Copyright ©: University of Illinois CS 241 Staff

[Critical Section Requirements

Mutual Exclusion
Progress
Bounded Walit

Copyright ©: University of Illinois CS 241 Staff

[Critical Section Requirements

Mutual Exclusion
o At most one thread in critical section

o No other thread may execute within the
critical section while a thread is in it

Progress
Bounded Wait

Copyright ©: University of Illinois CS 241 Staff

[Critical Section Requirements

Mutual Exclusion

Progress

o If no thread is executing inside its critical
section and some threads are trying to
get into their critical section, then one of
them should be able to enter its critical
section

Bounded Walit

Copyright ©: University of Illinois CS 241 Staff

[Critical Section Requirements

Mutual Exclusion
Progress

Bounded Walit

o A thread requesting entry to a critical
section should only have to wait for a
bounded number of other threads to enter
and leave the critical section

Copyright ©: University of Illinois CS 241 Staff 28]

Critical Section Requirements

Mutual Exclusion
Progress
Bounded Walit

Must ensure these requirements without
assumptions about number and speed of
CPUs, or scheduling policy!

Copyright ©: University of Illinois CS 241 Staff

Summarizing Critical Sections

A enters critical section A leaves critical section

Thread A |

| | | |

I I Battemptsto | Benters | Bleaves

l I entercritical | critical | critical

[| /section I section I section

|
ThreadB [EEEEEEEEEEEEER

g J

| | _ Y | |

' + Bisblocked '

T1 T2 T3 T4

Threads A and B have both a critical section
guarded by the same semaphore S

Copyright ©: University of Illinois CS 241 Staff

