
Copyright ©: University of Illinois CS 241 Staff

Threads II:
POSIX API 'Pthreads’

Passing Arguments to Threads

n  pthread_create()
¡  Only one argument to the thread start routine. It must

be passed by reference and cast to (void *)

¡  For multiple arguments
n  Create a structure that contains all of the arguments
n  Pass a pointer to that structure in pthread_create()

Copyright ©: University of Illinois CS 241 Staff

Copyright ©: University of Illinois CS 241 Staff

Passing Arguments to Threads

n  Passing an int:
¡  int i = 42;

pthread_create(..., my_func, (void *)&i);

n  Passing a C-string:
¡  char *str = "UIUC";

pthread_create(..., my_func, (void *)str);

n  Passing an array:
¡  int arr[100];

pthread_create(..., my_func, (void *)arr);

Where should these
be declared?

Passing Arguments to Threads

n  Retrieving an int:
¡  void *myfunc(void *vptr_value) {

 int value = *((int *)vptr_value);

n  Retrieving a C-string:
¡  void *myfunc(void *vptr_value) {

 char *str = (char *)vptr_value;

n  Retrieving an array:
¡  void *myfunc(void *vptr_value) {

 int *arr = (int *)vptr_value;

Copyright ©: University of Illinois CS 241 Staff

Race Conditions

n  What is a race condition?
¡  “A race occurs when the correctness of a program depends on

one thread reaching point x in its control flow before another
thread reaches point y.”**

n  Why do race conditions occur?
¡  A race condition occurs when two or more threads can access/

modify shared data and the applied operations are non-atomic.
¡  The scheduling algorithm can swap between threads at any

point, interrupting a non-atomic operation and leaving the shared
data in an inconsistent state. Hence, the result of the change in
data is dependent on the thread scheduling algorithm.

5 **Definition from “Computer Systems: A Programmer's Perspective”

Race Conditions
n  Race conditions are notoriously difficult to debug, since they

are often marginal (only occur in pathological and "very
unlikely" situations), and highly dependent on the relative
timing between interfering threads

n  What solutions can we apply?
¡  Use synchronization** primitives (like mutex/semaphore) when

performing operations on shared data variables
¡  Use non-preemptive scheduling (bad idea! è non-portable)
¡  Use atomic operations to modify global shared data (e.g., x86

instruction LOCK INC mem_location) (bad idea! è requires use of
assembly code)

Copyright ©: University of Illinois CS 241 Staff 6

** We will study synchronization after scheduling!

Calling a library function:
is it safe?

n  Concurrent programming with pthreads can trigger race
conditions or undefined behavior in your code if calling
thread-unsafe functions

n  POSIX pthreads: use library thread-safe functions
¡  A thread-safe function is one that can be safely (i.e., it

will deliver the same results regardless of whether it
is) called from multiple threads at the same time. è see
man 7 pthreads

¡  POSIX requires that all functions specified in the
standard shall be thread-safe, except for the following
functions (see next slide):

Copyright ©: University of Illinois CS 241 Staff 7

System & library functions that are
not required to be thread-safe

Copyright ©: University of Illinois CS 241 Staff

asctime dirname getenv getpwent lgamma readdir

basename dlerror getgrent getpwnam lgammaf setenv

catgets drand48 getgrgid getpwuid lgammal setgrent

crypt ecvt getgrnam getservbyname localeconv setkey

ctime encrypt gethostbyaddr getservbyport localtime setpwent

dbm_clearerr endgrent gethostbyname getservent lrand48 setutxent

dbm_close endpwent gethostent getutxent mrand48 strerror

dbm_delete endutxent getlogin getutxid nftw strtok

dbm_error fcvt getnetbyaddr getutxline nl_langinfo ttyname

dbm_fetch ftw getnetbyname gmtime ptsname unsetenv

dbm_firstkey gcvt getnetent hcreate putc_unlocked wcstombs

dbm_nextkey getc_unlocked getopt hdestroy putchar_unlocked wctomb

dbm_open getchar_unlocked getprotobynumber inet_ntoa pututxline

dbm_store getdate getprotoent l64a rand

9

Classes of thread-unsafe
functions

1.  Functions that do not protect shared variables.
è thread-safety can be enforced by protecting the shared variables with
synchronization operations

2.  Functions that keep state across multiple invocations.
(see rand) è thread-safety can be enforced by re-writing the function as reentrant;
hence, the caller passes state information in the arguments

3.  Functions that return a pointer to a static variable.
(see ctime) è thread-safety can be enforced by re-writing the function as reentrant or
using the “lock and copy” technique that associates a mutex to the unsafe function

4.  Functions that call thread-unsafe functions.
è use one of above solutions depending on class of called unsafe function

From “Computer Systems: A Programmer's Perspective”

10

The set of all functions

n  Relationship between the sets of reentrant, thread-safe,
and non-thread-safe functions

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

From “Computer Systems: A Programmer's Perspective”

Copyright ©: Nahrstedt, Angrave, Abdelzaher

11

Thread-safe

n  Thread-safe means that a (library) function can be called
from multiple threads without destructive results

n  A way to make a function thread-safe is to protect its
critical sections (accessing static or global non-constant
data) with synchronization** primitives

n  A more efficient solution is to re-write the library function
as reentrant to become thread-safe
¡  Every reentrant function is thread-safe; however, not every

thread-safe function is reentrant.

** We will study synchronization after scheduling!

Copyright ©: Nahrstedt, Angrave, Abdelzaher

12

Thread-safe

13

Reentrant functions

n  A function is described as reentrant if it can be reentered
while it is already running (i.e. it can be safely executed
concurrently)

n  It is important to realize that reentrancy is a property that
needs to be guaranteed by both the caller and callee.

è Improper use of a reentrant function will invalid this property (e.g., caller
passes a shared variable as state information in the arguments)

n  A reentrant function must:

¡  hold no static (or global) non-constant data.
¡  work only on the data provided to it by the caller.
¡  not return a pointer to a static variable
¡  not call non-reentrant routines.

Copyright ©: Nahrstedt, Angrave, Abdelzaher

14

n  An example: rand and rand_r function

n  int rand(void);

n  int rand_r(unsigned int *nextp); ç reentrant version of rand()

n  The function rand() is not reentrant or thread-safe, since it uses

hidden state that is modified on each call. This might just be the
seed value to be used by the next call, or it might be something more
elaborate.

n  In order to get reproducible behavior in a threaded application, this
state must be made explicit. The function rand_r() is supplied with a
pointer to an unsigned int, to be used to store state between calls.

The case of rand()

15

The case of rand()
unsigned int next = 1;

/* rand - return pseudo-random integer on 0..32767 */
int rand(void) {
 next = next*1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}

/* srand - set seed for rand() */
void srand(unsigned int seed) {
 next = seed;
}

/* rand_r – a reentrant pseudo-random integer on 0..32767 */
int rand_r(unsigned int *nextp) {
 *nextp = *nextp * 1103515245 + 12345;
 return (unsigned int)(*nextp / 65536) % 32768;
}

From “Computer Systems: A Programmer's Perspective”

Reverse_vector example

#define MAX_SIZE

static int tmpvector[MAX_SIZE];

int reverse_vector(int *vector, unsigned int size) {
 unsigned int idx;
 if(size > MAX_SIZE) return -1;
 for(idx = 0; idx < size; idx++)
 tmpvector[idx] = vector[size-idx-1];
 for(idx = 0; idx < size; idx++)
 vector[idx] = tmpvector[idx];
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

Is it thread-safe?

int reverse_vector_r(int *vector, unsigned int size) {

 int *startPtr, *endPtr;
 int tmp;
 startPtr = vector;
 endPtr = vector + size -1;
 while(startPtr < endPtr) {
 tmp = *endPtr;
 *endPtr = *startPtr;
 *startPtr = tmp;
 startPtr++; endPtr--;
 }
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

Is it thread-safe,
reentrant
or both?

Reverse_vector_r example

Useful when studying signals:
what is async-signal-safe?

n  POSIX signals: only call library async-signal-safe functions
inside a signal handler. è see man 7 signal

n  A function is said to be async-signal-safe if it is
either reentrant or non-interruptible by signals
¡  You will learn more about it when discussing POSIX

signals

Copyright ©: University of Illinois CS 241 Staff 18

