
Copyright ©: University of Illinois CS 241 Staff

Threads:
POSIX API 'Pthreads’

2

Creating a Thread

n  When a new thread is created it runs
concurrently with the creating thread.

n  When creating a thread you indicate
which function the thread should
execute.

Copyright ©: University of Illinois CS 241 Staff

Compare: Normal function call
(one thread)

Copyright ©: University of Illinois CS 241 Staff

processfd();

processfd() {

}

Calling program
Called function

Thread of execution

Compare: Threaded function
call

Copyright ©: University of Illinois CS 241 Staff

pthread_create();

processfd() {

}

Creating program
Created thread

processfd();

processfd() {

}

Calling program
Called function

Thread creation
Thread of execution

Threads vs. Processes

n  Process
¡  fork is expensive (time & memory)
¡  each process has its own virtual addr. space

n  Thread
¡  Lightweight process
¡  Shared virtual address space
¡  Does not require lots of memory or startup time

Copyright ©: University of Illinois CS 241 Staff

6

Design choices:
Processes versus Threads

Copyright ©: University of Illinois CS 241 Staff

Thread-Specific Resources

n  Each thread has its own
¡  pthread_t identifier
¡  Stack, Registers state,

Program Counter

n  Threads within the same
process can
communicate using
shared memory
¡  Must be done carefully!
¡  Virtual memory is shared

Copyright ©: University of Illinois CS 241 Staff

Process and Threads

n  Each process can include many threads
n  All threads of a process share:

¡  Process ID
¡  Virtual Memory (program code and global data)
¡  Open file/socket descriptors
¡  Semaphores
¡  Signal handlers
¡  Working environment (current directory, user ID,

etc.)

Copyright ©: University of Illinois CS 241 Staff

Threads and address space

From: https://computing.llnl.gov/tutorials/pthreads/images/thread.gif

Process Creation vs.
Thread Creation

n  http://www.llnl.gov/computing/tutorials/pthreads.
n  Timings reflect 50,000 process/thread.
n  Creations, were performed with the time utility, and units are

in seconds, no optimization flags.
Copyright ©: University of Illinois CS 241 Staff

Platform
fork() pthread_create()

real user sys real user sys
AMD 2.3 GHz Opteron (16 cpus) 12.5 1.0 12.5 1.2 0.2 1.3
AMD 2.4 GHz Opteron (8 cpus) 17.6 2.2 15.7 1.4 0.3 1.3
IBM 4.0 GHz POWER6 (8 cpus) 9.5 0.6 8.8 1.6 0.1 0.4
IBM 1.9 GHz POWER5 p5-575 (8 cpus) 64.2 30.7 27.6 1.7 0.6 1.1
IBM 1.5 GHz POWER4 (8 cpus) 104.5 48.6 47.2 2.1 1.0 1.5
INTEL 2.4 GHz Xeon (2 cpus) 54.9 1.5 20.8 1.6 0.7 0.9
INTEL 1.4 GHz Itanium2 (4 cpus) 54.5 1.1 22.2 2.0 1.2 0.6

POSIX and threads

n  Early on
¡  Each OS had its own thread library/API
¡  Difficult to write multithreaded programs

n  Learn a new API with each new OS
n  Modify code with each port to a new OS

n  So
¡  POSIX (IEEE 1003.1c-1995) provided a

standard known as pthreads

Copyright ©: University of Illinois CS 241 Staff

12

Pthread Operations

POSIX function description
pthread_create create a thread
pthread_detach set thread to release resources
pthread_equal test two thread IDs for equality
pthread_exit exit a thread without exiting process
pthread_kill send a signal to a thread
pthread_join wait for a thread
pthread_self find out own thread ID

Copyright ©: University of Illinois CS 241 Staff

Creating a Thread

int pthread_create (pthread_t* tid, pthread_attr_t*
attr, void*(child_main)(void*), void* arg);

n  creates a new posix thread
n  Parameters:

¡  tid:
n  Unique thread identifier returned from call

¡  attr:
n  Attributes structure used to define new thread
n  Use NULL for default values

¡  child_main:
n  Main routine for child thread
n  Takes a pointer (void*), returns a pointer (void*)

¡  arg:
n  Argument pointer passed to child thread

Copyright ©: University of Illinois CS 241 Staff

Creating a Thread

n  pthread_create() takes a pointer to a function as
one of its arguments
¡  child_main is called with the argument specified by arg
¡  child_main can only have one parameter of type void *
¡  Complex parameters can be passed by creating a structure

and passing the address of the structure
¡  The structure can't be a local variable
¡  By default, a new thread is created in a joinable state

n  Thread ID
¡  pthread_t pthread_self(void);
¡  Returns ID of executing thread

Copyright ©: University of Illinois CS 241 Staff

15

Exiting a thread

n  Question:
¡  If a thread calls exit(), what about other

threads in the same process?

n  When does a multithreaded process
terminate?

Copyright ©: University of Illinois CS 241 Staff

16

Exiting a thread

n  Question:
¡  If a thread calls exit(), what about other threads in the

same process?

n  A multithreaded process terminates when:
¡  one of its threads calls exit
¡  it returns from main()
¡  it receives a termination signal
¡  all threads have called pthread_exit

n  In any of these cases, all threads of the
process terminate.

Copyright ©: University of Illinois CS 241 Staff

Terminating Threads:
pthread_exit()

void pthread_exit(void * retval);
n  Terminate the calling thread
n  Makes the value retval available to any successful join with the

terminating thread
n  Returns

¡  pthread_exit() cannot return to its caller
n  Parameters

¡  retval:
n  Pointer to data returned to joining thread
n  Pass a pointer to heap not to the stack

n  Note
¡  If main() exits by calling pthread_exit() before its threads, the other

threads continue to execute. Otherwise, they will be terminated when
main() finishes.

Copyright ©: University of Illinois CS 241 Staff

Detaching Threads:
pthread_detach()

int pthread_detach(pthread_t thread);
n  Thread resources can be reclaimed on termination
n  Return results of a detached thread are unneeded
n  Returns

¡  0 on success
¡  Error code on failure

n  Parameters
¡  thread:

n  Target thread identifier
n  Notes

¡  pthread_detach() can be used to explicitly detach a thread
even though it was created as joinable

¡  There is no converse routine

Copyright ©: University of Illinois CS 241 Staff

Detached Threads

Copyright ©: University of Illinois CS 241 Staff

Master
Thread

Worker
Thread

Worker
Thread

pthread_create()

pthread_exit()

Worker
Thread

…
pthread_exit()

pthread_exit()

Waiting for Threads:
pthread_join()

int pthread_join(pthread_t thread, void** retval);
n  Suspends execution of the calling thread until the target thread

terminates, unless the target thread has already terminated.

n  Returns
¡  0 on success
¡  Error code on failure

n  Parameters
¡  thread:

n  Target thread identifier
¡  retval:

n  The pointer passed to pthread_exit() by the terminating thread is
made available in the location referenced by retval

Copyright ©: University of Illinois CS 241 Staff

Joined Threads

Copyright ©: University of Illinois CS 241 Staff

Master
Thread

Worker
Thread

pthread_create() pthread_join()

pthread_exit()

suspends calling thread,
retrieves void* retval

Example 1
int x = 0;
char *p;
void *thread(void *th){

 x = x + 10;
 strcat(p, "Hello from thread!");
 printf("thread: my x is %d. Bye from thread!\n", x);
 pthread_exit((void *) p+5);
}

int main() {
 pthread_t tid;
 char *p_char;
 p_char = p = malloc(25 * sizeof(char)); // data allocated on heap
 strcpy (p, "main-thread:");
 pthread_create(&tid, NULL, thread, NULL);

 pthread_join(tid, (void **) &p_char);

 printf("%s\n", p_char);
 printf("main: my x is %d; Bye from main!\n", x);
}

Copyright ©: University of Illinois CS 241 Staff

Necessary includes:
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>

Example 2
int x = 0;
char *p;
void *thread(void *th){

 x = x + 10;
 strcat(p, "Hello from thread!");
 printf("thread: my x is %d. Bye from thread!\n", x);
 pthread_exit((void *) p+5);
}

int main() {
 pthread_t tid;
 char *p_char;
 p_char = p = malloc(25 * sizeof(char)); // data allocated on heap
 strcpy (p, "main-thread:");
 pthread_create(&tid, NULL, thread, NULL);

 pthread_join(tid, (void **) &p_char);

 printf("%s\n", p_char);
 printf("main: my x is %d; Bye from main!\n", x);
}

Copyright ©: University of Illinois CS 241 Staff

Necessary includes:
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>

What is the output?

Valid outputs for example 2
(non-deterministic)

Output #1

main-thread:Hello from thread!

thread: my x is 10. Bye from thread!
main: my x is 10; Bye from main!

Output #2

main-thread:
thread: my x is 10. Bye from thread!
main: my x is 10; Bye from main!

Output #3

main-thread:
main: my x is 10; Bye from main!

Copyright ©: University of Illinois CS 241 Staff

pthread Error Handling

n  pthread functions do not follow the usual Unix
conventions
¡  Similarity

n  Returns 0 on success
¡  Differences

n  Returns error code on failure
n  Does not set errno

¡  What about errno?
n  Each thread has its own
n  errno is thread-local; setting it in one thread does not

affect its value in any other thread.
Copyright ©: University of Illinois CS 241 Staff

26

Threads vs processes

n  Threads are similar to concurrent processes
¡  Pros: thread creation is faster; data sharing among

threads is fast and easy
¡  Cons: application is less robust; data sharing requires

synchronization to avoid race conditions

n  If a thread misbehaves, it can corrupt data of other
threads within same process

n  If a thread crashes, the entire process crashes

Copyright ©: University of Illinois CS 241 Staff

Threads vs. Processes

Copyright ©: University of Illinois CS 241 Staff

Property Processes created with
fork

Threads of a
process

Ordinary function
calls

variables Get copies of all variables Share global
variables

Share global
variables

IDs Get new process IDs
Share the same
process ID but have
unique thread ID

Share the same
process ID (and
thread ID)

Data/control

Must communicate
explicitly, e.g., use pipes,
shared memory, msg.
passing.

May communicate
with return value or
carefully shared
variables

May communicate
with return value
or shared variables

Parallelism
(one CPU) Concurrent Concurrent Sequential

Parallelism
(multiple
CPUs)

May be executed
simultaneously

May be executed
simultaneously Sequential

