Processes - A System View

Waiting for a child to finish — wait()

```
#include <sys/types.h>
#include <wait.h>
pid t wait(int *status);
```

- Suspend calling process until child has finished
- Allow parent to reap child
- Returns:
 - Process ID of terminated child on success
 - -1 on error, sets errno
- Parameters:
 - status: status information set by wait and evaluated using specific macros defined for wait.

-Waiting for a child to finish — wait()

```
#include <sys/types.h>
#include <wait.h>
pid t wait(int *status);
```

- Suspend calling process until child has finished
- Allow parent to rean shild
- Returns:
 - Process ID of ter
 - -1 on error, sets
- Parameters:
 - status: status information set by wait and evaluated using specific macros defined for wait.

Instead of waiting, you can use a signal handler (later lecture) for signal SIGCHLD which issues a wait() call

wait() syscall

- Allows parent process to wait (block) until child finishes
- Causes the caller to suspend execution until child's status is available

errno	cause
ECHILD	Caller has no unwaited-for children
EINTR	Function was interrupted by signal
EINVAL	Options parameter of waitpid was invalid

Waiting for a child to finish

```
void fork9() {
   int child status;
   if (fork() == 0) {
      printf("HC: hello from child\n");
   else {
      printf("HP: hello from parent\n");
      wait(&child status);
      printf("CT: child has terminated\n");
   printf("Bye\n");
   exit();
```

```
HC Bye

HP CT Bye
```

If parent has multiple children, wait will return when one of them (order not known!) completes

Texecv: Loading and Running Programs

```
int execv(char *filename, char *argv[])
```

- transforms the calling process into a new process
 - Runs executable filename
 - With argument list argv
- Does not return (unless error)
- Overwrites code, data, and stack
 - keeps pid, open files and signal context

execv: Loading and Running Programs

```
int execv(char *filename, char *argv[])
```

 argv is a pointer to the argument list to be made available to the new process

To pass arguments and environment, use:

execv Example

```
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
int main(int argc, char **argv)
 int fd:
 fd = open(argv[1],O RDWR|O CREAT,S IRWXU); //???
 dup2(fd, 1);
                                              //???
 close(fd);
                                              //???
 char* array[] = {"ls", "-la", NULL};
 execv("/bin/ls", array);
 printf("This string should not be printed!\n");
```

execv Example

```
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
int main(int argc, char **argv)
 int fd:
 fd = open(argv[1],O_RDWR|O_CREAT,S_IRWXU); //create an output file
                                             //redirect output to file
 dup2(fd, 1);
 close(fd);
                                             //free unused file descriptor
 char* array[] = {"ls", "-la", NULL};
 execv("/bin/ls", array);
 printf("This string should not be printed!\n");
```

Concurrent Processes

- Two processes run concurrently (are concurrent) if their flows overlap in time
 - Otherwise, they are sequential
- Examples (running on single core)
 - Concurrent: A & B, A & C
 - Sequential: B & C

What is fork good for?

- What does concurrency gain us?
 - The appearance that multiple actions are occurring at the same time
 - If done right, your program can improve throughput (#instr./second)
- fork () creates a new process that runs concurrently

What is fork good for?

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main() {
    pid t pid;
    int i;
        if(pid = fork()) {
                                  /* parent */
            parentProcedures();
        else {
                                  /* child */
            childProcedures();
    return 0;
```

What is fork good for?

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main() {
    pid t pid;
    int i;
    while (1) {
         /* wait for new clients */
         if(pid = fork()) {
                                       /* parent */
              /* reset server */
         else {
                                       /* child */
              /* handle new client */
              exit(0);
    return 0;
                         Copyright ©: University of Illinois CS 241 Staff
```

Why Concurrency?

- Exploit natural concurrent structure of an application
 - The world is not sequential!
 - Easier to program multiple independent and concurrent activities
- Better resource utilization
 - Resources unused by one application can be used by the others
- Better average response time
 - No need to wait for other applications to make progress

Benefits of Concurrency

Five State Process Model

- New
 - New process is created
- Ready
 - Available to execute
- Running
 - Currently executing
 - On a single processor machine, at most one process in the "running" state
- Blocked
 - Waiting on some event
- Done
 - Process terminates

New process creation

- New to Ready
 - Move to pool of ready processes

Ready for Running

What events cause these transitions?

- Blocked to Ready
 - Resource is now available

