
Copyright ©: University of Illinois CS 241 Staff

Processes - A System View

Waiting for a child to finish –
wait()

#include <sys/types.h>
#include <wait.h>
pid_t wait(int *status);

n  Suspend calling process until child has finished
n  Allow parent to reap child
n  Returns:

¡  Process ID of terminated child on success
¡  -1 on error, sets errno

n  Parameters:
¡  status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 2

Waiting for a child to finish –
wait()

#include <sys/types.h>
#include <wait.h>
pid_t wait(int *status);

n  Suspend calling process until child has finished
n  Allow parent to reap child
n  Returns:

¡  Process ID of terminated child on success
¡  -1 on error, sets errno

n  Parameters:
¡  status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 3

Instead of waiting, you can use
a signal handler (later lecture)

for signal SIGCHLD which
issues a wait() call

wait() syscall

Copyright ©: University of Illinois CS 241 Staff 4

n  Allows parent process
to wait (block) until
child finishes

n  Causes the caller to
suspend execution
until child’s status is
available

errno cause
ECHILD Caller has no

unwaited-for
children

EINTR Function was
interrupted by
signal

EINVAL Options
parameter of
waitpid was
invalid

Waiting for a child to finish

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

Copyright ©: University of Illinois CS 241 Staff 5

HP

HC Bye

CT Bye

If parent has multiple
children, wait will return
when one of them (order
not known!) completes

execv: Loading and Running
Programs

int execv(char *filename, char *argv[])

n  transforms the calling process into a new
process
¡  Runs executable filename
¡  With argument list argv

n  Does not return (unless error)
n  Overwrites code, data, and stack

¡  keeps pid, open files and signal context

Copyright ©: University of Illinois CS 241 Staff

execv: Loading and Running
Programs

int execv(char *filename, char *argv[])
n  argv is a pointer to the argument list to be

made available to the new process

n  To pass arguments and environment, use:
int execve(char *filename, char *argv[], char *envp[])

Copyright ©: University of Illinois CS 241 Staff

argv[argc]	
 =	
 NULL
argv[argc-­‐1]

argv[0]
…

“ls”
“-la”
“/usr/include”

argv

execv Example

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 int fd;

 fd = open(argv[1],O_RDWR|O_CREAT,S_IRWXU); //???
 dup2(fd, 1); //???
 close(fd); //???

 char* array[] = {"ls", "-la", NULL};
 execv("/bin/ls", array);

 printf("This string should not be printed!\n");
}

execv Example

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 int fd;

 fd = open(argv[1],O_RDWR|O_CREAT,S_IRWXU); //create an output file
 dup2(fd, 1); //redirect output to file
 close(fd); //free unused file descriptor

 char* array[] = {"ls", "-la", NULL};
 execv("/bin/ls", array);

 printf("This string should not be printed!\n");
}

Concurrent Processes

n  Two processes run concurrently (are concurrent) if
their flows overlap in time
¡  Otherwise, they are sequential

n  Examples (running on single core)
¡  Concurrent: A & B, A & C
¡  Sequential: B & C

Copyright ©: University of Illinois CS 241 Staff 10

Process A Process B Process C

Time

n  What does concurrency gain us?
¡  The appearance that multiple actions are

occurring at the same time
¡  If done right, your program can

 improve throughput (#instr./second)

n  fork()creates a new process that runs
concurrently

Copyright ©: University of Illinois CS 241 Staff

What is fork good for?

What is fork good for?
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

 pid_t pid;
int i;

 if(pid = fork()) { /* parent */

 }
 else { /* child */

 }

 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

childProcedures();

parentProcedures();

What is fork good for?
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

 pid_t pid;
int i;
while (1) {

 if(pid = fork()) { /* parent */

 }
 else { /* child */

 exit(0);
 }

 }
 return 0;

} Copyright ©: University of Illinois CS 241 Staff

/* wait for new clients */

/* handle new client */

/* reset server */

Why Concurrency?

n  Exploit natural concurrent structure of an
application
¡  The world is not sequential!
¡  Easier to program multiple independent and concurrent

activities
n  Better resource utilization

¡  Resources unused by one application can be used by
the others

n  Better average response time
¡  No need to wait for other applications to make progress

Copyright ©: University of Illinois CS 241 Staff

Benefits of Concurrency

Copyright ©: University of Illinois CS 241 Staff

Client 1
 Client 2
 Client 3

Time

Client 1
 Client 2
 Client 3

Wait for input

Wait for input

N
o

C
on

cu
rr

en
cy

W

ith
 C

on
cu

rr
en

cy

Five State Process Model

n  New
¡  New process is created

n  Ready
¡  Available to execute

n  Running
¡  Currently executing
¡  On a single processor machine, at most one process in the
“running” state

n  Blocked
¡  Waiting on some event

n  Done
¡  Process terminates

Copyright ©: University of Illinois CS 241 Staff

5 State Model - Transitions

n  New process creation

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

enter

5 State Model - Transitions

n  New to Ready
¡  Move to pool of

ready
processes

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

n  Ready for Running
¡  Chosen to run from

the pool of ready
processes
(How?)

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

What events cause these transitions?

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

n  Running to Ready
¡  Preempted

n  Running to Blocked
¡  Request for an

unavailable resource

n  Running to Done
¡  Terminated by the OS

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

n  Blocked to Ready
¡  Resource is now available

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

n  Ready to Done
¡  Involuntary termination

n  Blocked to Done
¡  Involuntary termination

Copyright ©: University of Illinois CS 241 Staff

new ready

running
done

blocked

5 State Model - Transitions

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request
(syscall)

I/O complete

selected to
run

