

Copyright ©: University of Illinois CS 241 Staff 1

Process

What is a Process?
n  Definition: an executable instance of a program

¡  A process is the context (the information/data) maintained for an
executing program

¡  How is a program different from a process?
n  a program is a passive collection of instructions;
n  a process is the actual execution of those instructions; each process has a state

to keep track of its execution

n  Process provides each program with two key abstractions
¡  Logical control flow

n  Each program seems to have exclusive use of the CPU
¡  Private virtual address space

n  Each program seems to have exclusive use of main memory

Copyright ©: University of Illinois CS 241 Staff 2

What is a Process?

n  How are these illusions maintained?
¡  Process executions interleaved (multitasking) or run on

separate cores
¡  Address spaces managed by virtual memory system

n  Unix processes
¡  Process #1 is known as the 'init' process (root of

the process hierarchy)
¡  Each process has a unique identifier

Copyright ©: University of Illinois CS 241 Staff 3

Concurrent Processes

n  Two processes run concurrently (are concurrent) if
their flows overlap in time
¡  Otherwise, they are sequential

n  Examples (running on single core)
¡  Concurrent: A & B, A & C
¡  Sequential: B & C

Copyright ©: University of Illinois CS 241 Staff 4

Process A Process B Process C

Time

Context Switching

n  Processes are managed by the kernel
n  Control passes from one process to another via a context switch

Copyright ©: University of Illinois CS 241 Staff 5

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

What makes up a process?

n  Program code
n  Machine registers
n  Global data
n  Stack
n  Open files
n  An environment

Copyright ©: University of Illinois CS 241 Staff 6

Process Context

n  Process ID (pid) unique integer
n  Parent process ID (ppid) unique integer
n  Current directory
n  File descriptor table
n  Environment
n  Pointer to program code
n  Pointer to data Mem for global vars
n  Pointer to stack Mem for local vars
n  Pointer to heap Dynamically

 allocated memory
n  Execution priority
n  Signal information

Copyright ©: University of Illinois CS 241 Staff 7

Unix Processes

n  Virtual address space
¡  The virtual address space is the memory that contains the

code to execute as well as the process stack and data

n  Process Descriptor: data structure in the kernel to
keep track of that process
¡  Virtual address space map
¡  Current status of the process
¡  Execution priority of the process
¡  Resource usage of the process
¡  Current signal mask
¡  Owner of the process

Copyright ©: University of Illinois CS 241 Staff 8

Know your process

n  Know your process id
pid_t myid = getpid()

n  Know your parent
pid_t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff 9

Creating a Process – fork()

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

n  Create a child process
¡  The child is an (almost) exact copy of the parent
¡  The new process and the old process both continue in

parallel from the statement that follows the fork()

n  Returns:
¡  To child

n  0 on success

¡  To parent
n  process ID of the child process
n  -1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff 10

Understanding fork()

n  Fork is interesting (and often confusing)
because it is called once but returns twice

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Copyright ©: University of Illinois CS 241 Staff 11

Program
Text

Creating a Process – fork()

Copyright ©: University of Illinois CS 241 Staff 12

Shared
Program

Text Data Copy-on-write
of Data

Parent

pid = fork() Child
In the child:
pid == 0;

In the
parent:
pid == the
process ID
of the child

A program can use this pid difference to do
different things in the parent and child

An Example
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

 pid_t pid;
int i;
pid = fork();
if(pid > 0) { /* parent */
 for(i=0; i < 1000; i++)

 printf(“\t\t\t PARENT %d\n”, i);
 } else { /* child */

 for(i=0; i < 1000; i++)
 printf(“CHILD %d\n”, i);
 }
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 13 What will the output be?

An Example
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

 pid_t pid;
int i;
pid = fork();
if(pid > 0) { /* parent */
 for(i=0; i < 1000; i++)

 printf(“\t\t\t PARENT %d\n”, i);
 } else { /* child */

 for(i=0; i < 1000; i++)
 printf(“CHILD %d\n”, i);
 }
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 14 What will the output be?

n  Both processes start with
same state
¡  Each of them has a private

virtual address space
¡  Including an identical copy

of open file descriptors

n  Relative ordering of
parent/child print
statements (and so
variable manipulations) is
undefined

Possible Output

 CHILD 0
CHILD 1
CHILD 2
 PARENT 0
 PARENT 1
 PARENT 2
 PARENT 3

CHILD 3
CHILD 4
 PARENT 4
 :

Copyright ©: University of Illinois CS 241 Staff 15

Possible Output

n  Switching between parent and child
depends on many factors
¡  Machine load, OS CPU scheduler

n  I/O buffering affects amount of shown output
n  Output interleaving is nondeterministic

¡  Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff 16

Chain and Fan
Chain

n  Write code to make
chain

Fan
n  Code to make N children

of one parent process

Copyright ©: University of Illinois CS 241 Staff 17

Child Child Parent

Parent

Child Child … …

Chain and Fan
Chain

pid_t childpid;
for (i=1;i<n;i++)
 if (childpid = fork())
 break;

Fan

Copyright ©: University of Illinois CS 241 Staff 18

Child Child Parent

Parent

Child Child … …

Chain and Fan
Chain

pid_t childpid;
for (i=1;i<n;i++)
 if (childpid = fork())
 break;

Fan
pid_t childpid;
for (i=1;i<n;i++)
 if ((childpid=fork()) <=0)
 break;

Copyright ©: University of Illinois CS 241 Staff 19

Child Child Parent

Parent

Child Child … …

Child process inherits
parent’s open files

n  Parent forks after opening files foo.txt and readme.txt

Copyright ©: University of Illinois CS 241 Staff Copyright ©: University of Illinois CS 241 Staff

fd=0
fd=1
fd=2
fd=3
fd=4

Parent’s file desc. Table

stdin

stdout

stderr
file offset
 file object's
usage cnt = 2
…

List of open file obj.
(shared by all processes)

File “foo.txt”

file offset
 file object's
usage cnt = 2
…

file type
file size
of hard links
…

List of i-nodes
(shared by all processes)

File “readme.txt” fd=0
fd=1
fd=2
fd=3
fd=4

Child’s file desc. Table

stdin

stdout

stderr

file type
file size
of hard links
…

When a process terminates

Copyright ©: University of Illinois CS 241 Staff 21

n  When a child process terminates:
¡  Open files are flushed and closed
¡  Child’s resources are de-allocated

n  File descriptors, memory, semaphores,
file locks, …

¡  Parent process is notified via signal
SIGCHLD

¡  Exit status is available to parent via wait()

Process Termination

n  Voluntary
termination
¡  Normal exit

n  return zero from
main()

n  exit(0)

¡  Error exit
n  exit(1)

n  Involuntary
termination
¡  Fatal error

n  Divide by 0, core
dump / seg fault

¡  Killed by another
process
n  kill procID, end

task

Copyright ©: University of Illinois CS 241 Staff 22

exit() Example

void exit(int status)
¡  Exits a process
¡  Normally return with status 0

 void cleanup(void) {
 printf("cleaning up\n");

 }

 int main() {
 atexit(cleanup);
 fork();
 exit(0);

 }

atexit()
¡  Registers functions to

be executed upon exit

Copyright ©: University of Illinois CS 241 Staff 23

Zombies

n  What happens on termination?
¡  When process terminates, still consumes system

resources
¡  Entries in various tables & info maintained by OS

n  Called a “zombie”
¡  Living corpse, half alive and half dead

Copyright ©: University of Illinois CS 241 Staff 24

Zombies

n  Reaping
¡  Performed by parent on terminated child (using wait or

waitpid)
¡  Parent is given exit status information
¡  Kernel discards process

n  What if parent doesn’t reap?
¡  If any parent terminates without reaping a child, then child

will be reaped by init process (pid == 1)
¡  So, only need explicit reaping in long-running processes

n  e.g., shells and servers

Copyright ©: University of Illinois CS 241 Staff 25

Zombie Example
void forktest() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",

 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",

 getpid());
 while (1); /* Infinite loop */
 }
}

Copyright ©: University of Illinois CS 241 Staff 26

Zombie Example
void forktest() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",

 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",

 getpid());
 while (1); /* Infinite loop */
 }
}

Copyright ©: University of Illinois CS 241 Staff 27

Linux> ./forktest 7 &
[1] 8992
Terminating Child, PID = 8993
Running Parent, PID = 8992
Linux> ps
 PID TTY TIME CMD
 8992 pts/1 00:00:06 forktest
 8993 pts/1 00:00:00 forktest <defunct>
 8994 pts/1 00:00:00 ps
29160 pts/1 00:00:00 bash
Linux> kill 8992
[1]+ Terminated ./forktest
Linux> ps
 PID TTY TIME CMD
 9004 pts/1 00:00:00 ps
29160 pts/1 00:00:00 bash

n  ps shows child process as
“defunct”

n  Killing parent allows child to
be reaped by init

