Process

Copyright ©: University of Illinois CS 241 Staff



[What IS a Process?

Definition: an executable instance of a program

o A process is the context (the information/data) maintained for an
executing program

o How is a program different from a process?
a program is a passive collection of instructions;

a process is the actual execution of those instructions; each process has a state
to keep track of its execution

Process provides each program with two key abstractions

o Logical control flow
Each program seems to have exclusive use of the CPU

o Private virtual address space
Each program seems to have exclusive use of main memory

Copyright ©: University of Illinois CS 241 Staff 2 ]



[What IS a Process?

How are these illusions maintained?

o Process executions interleaved (multitasking) or run on
separate cores

o Address spaces managed by virtual memory system

Unix processes

o Process #1 is known as the 'init' process (root of
the process hierarchy)

o Each process has a unique identifier

Copyright ©: University of Illinois CS 241 Staff 3 ]



Concurrent Processes

Two processes run concurrently (are concurrent) if
their flows overlap in time

o Otherwise, they are sequential

Examples (running on single core)
o Concurrent: A&B,A&C
o Sequential: B & C

Process A Process B Process C

Time

Copyright ©: University of Illinois CS 241 Staff



Context Switching

Processes are managed by the kernel

Control passes from one process to another via a context switch

Process A Process B

I
I
I
I
I
I user code
I

kernel code } context switch
Time
user code

kernel code } context switch

user code

|
Copyright ©: University of Illinois CS 241 Staff

N 1



[What makes up a process?

Program code
Machine registers
Global data
Stack

Open files

An environment

Copyright ©: University of Illinois CS 241 Staff



Process Context

Process ID (pid)

Parent process ID (ppid)
Current directory

File descriptor table
Environment

Pointer to program code
Pointer to data

Pointer to stack

Pointer to heap

Execution priority
Signal information

unique integer
unique integer

Mem for global vars
Mem for local vars
Dynamically
allocated memory

Copyright ©: University of Illinois CS 241 Staff



Unix Processes

Virtual address space

o The virtual address space is the memory that contains the
code to execute as well as the process stack and data

Process Descriptor: data structure in the kernel to
keep track of that process

Virtual address space map

Current status of the process

Execution priority of the process

Resource usage of the process

Current signal mask

Owner of the process

Copyright ©: University of Illinois CS 241 Staff

O O O O O O



[Know your process

Know your process id
pid t myid = getpid()

Know your parent
pid t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff



Creating a Process — fork ()

#include <sys/types.h>
#include <unistd.h>
pid t fork(void);

Create a child process

o The child is an (almost) exact copy of the parent

o The new process and the old process both continue in
parallel from the statement that follows the fork ()

Returns:

o To child

0 on success

o To parent
process ID of the child process
-1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff



Understanding fork ()

Fork is interesting (and often confusing)
because it Is called once but returns twice

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");

Copyright ©: University of Illinois CS 241 Staff



[Creating a Process — fork ()

Parent

pid = fork () ¢ Child pid ==
In the

parent: Shared
pid ==the Program
process ID Data Text
of the child

In the child:

Copy-on-write
of Data

A program can use this pid difference to do
different things in the parent and child

Copyright ©: University of Illinois CS 241 Staff

o



An Example

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
pid_t pid;
int i;
pid = fork();

(if( pid > 0 ) {

for( i=0; i < 1000; i++ )

/* parent */ A

9 printf (“\t\t\t PARENT %d\n”, i)
} else { /* child */
for(i=0; i < 1000; i++) A
printf( “CHILD %d\n”, i );
1 Y,

return O;

What will the output be?

Copyright ©: University of Illinois CS 241 Staff




An Example

#include <stdio.h> Both processes start with

#include <sys/types.h> same state
#include <unistd.h> o  Each of them has a private
virtual address space
int main() { o Including an identical copy
pid t pid; of open file descriptors
int i;
pid = fork();
(if( pid > 0 ) { /* parent */ )
for( i=0; i < 1000; i++ ) i Relative ordering of
L printf ( \t\t\t PARENT %d\n , i);) t/ hild int
Y else { /* child */ parentcniia prin
for (i=0; i < 1000; i++) A statements (and so
printf( “CHILD %d\n”, i ); variable manipulations) is
. J undefined
return O;

What will the output be? Copyright ©: University of Tllinois CS 241 Staff 14 ]




Possible Output

CHILID
CHILD
CHILD

CHILD
CHILD

= O

=N

PARENT
PARENT
PARENT
PARENT

WMNhPRFLO

PARENT 4

Copyright ©: University of Illinois CS 241 Staff



[Possible Output

Switching between parent and child
depends on many factors

o Machine load, OS CPU scheduler
I/O buffering affects amount of shown output

Output interleaving is nondeterministic
o Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff 16 ]



Chain and Fan

Chain Fan
Write code to make Code to make N children
chain of one parent process

Copyright ©: University of Illinois CS 241 Staff



Chain and Fan

Chain Fan
pid t childpid;
for (i=1;i<n;i++)
if (childpid = fork())
break;

Copyright ©: University of Illinois CS 241 Staff



Chain and Fan

Chain Fan
pid t childpid; pid t childpid;
for (i=1;i<n;i++) for (i=1;i<n;i++)
if (childpid = fork()) if ((childpid=fork()) <=0)
break; break;

@

Copyright ©: University of Illinois CS 241 Staff



Child process inherits
parent’s open files

Parent forks after opening files foo.txt and readme.txt

Parent’s file desc. Table List of open file obj. List of i-nodes
stdin  fd=0 (shared by all processes) (shared by all processes)
File “foo.txt”
stdout fd=1 |
stderr fd=2 . file type
=3 file offset file size
fd=4 file object's # of hard links

usage cnt = 2

Child’s file desc. Table

- _ File “readme.txt”
stdin  fd=0 >
stdout fd=1 e et yp
ile offse ile si

stderr | fd=2 . = file size

t4=3 file object's # of hard links

- usage cnt = 2
fd=4 nois CS 241 Staff



[When a process terminates

When a child process terminates:
o Open files are flushed and closed
o Child’ s resources are de-allocated

File descriptors, memory, semaphores,
file locks, ...

o Parent process is notified via signal
SIGCHLD

o Exit status is available to parent via wait()

Copyright ©: University of Illinois CS 241 Staff



Process Termination

Voluntary Involuntary
termination termination
o Normal exit o Fatal error
return zero from Divide by 0, core
main () dump / seg fault
exit (0) o Killed by another
o Error exit process
exit (1) kill proclD, end
task

Copyright ©: University of Illinois CS 241 Staff



exit () Example

void exit(int status) atexit ()
o Exits a process o Registers functions to
o Normally return with status 0 be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

int main() {
atexit (cleanup) ;
fork () ;
exit (0) ;

Copyright ©: University of Illinois CS 241 Staff 23 ]



Zombies

= What happens on termination?

o When process terminates, still consumes system
resources

o Entries in various tables & info maintained by OS

= Called a “zombie”
o Living corpse, half alive and half dead

Copyright ©: University of Illinois CS 241 Staff




Zombies

Reaping
o Performed by parent on terminated child (using wait or
waitpid)

o Parent is given exit status information
o Kernel discards process

What if parent doesn’ t reap?
o If any parent terminates without reaping a child, then child
will be reaped by init process (pid == 1)
o So, only need explicit reaping in long-running processes
e.g., shells and servers

Copyright ©: University of Illinois CS 241 Staff



Zombie Example

void forktest () {
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid()) ;
exit (0) ;
} else {
printf ("Running Parent, PID = %d\n",
getpid()) ;
while (1); /* Infinite loop */

Copyright ©: University of Illinois CS 241 Staff



Zombie Example

void forktest () {

printf ("Terminating (
getpid());

if (fork() == 0
/* Child */
exit (0) ;

} else {

printf ("Running Parer

) A

Linux> ./forktest
[1] 8992
Terminating Child,

7 &

PID

8993

Running Parent, PID = 8992

Linux> ps

getpid()); 8532 T1T:Y/1 00:
while (1); /* Infinit ggq4 it:/l 00
} 8994 pts/1  00:
I 29160 pts/1 00:
Linux> kill 8992
[1]+ Terminated
. Linux> ps
ps shows child process as PID TTY

“defunct”

9004 pts/1 00:
29160 pts/1 00:

Killing parent allows child to

be reaped by init

Copyright ©: University of Illinois CS 241 Staff

TIME
00:06
00:00
00:00
00:00

TIME
00:00
00:00

CMD
forktest
forktest <defunct>

pPs
bash

./forktest

CMD

pPs
bash



