

Copyright ©: University of Illinois CS 241 Staff 1

Memory mapping

DEMO Time

n  Hacking the virtual memory system of Linux
¡  A journey through the page directories and tables

of Linux kernel 32bits

 By Renato Mancuso

Copyright ©: University of Illinois CS 241 Staff 2

virtual address (32 bits)! addresses a byte in VM

Two level page table hierarchy

addresses a byte
in Physical Mem.

Copyright ©: University of Illinois CS 241 Staff 4

Copyright ©: University of Illinois CS 241 Staff 5

Copyright ©: University of Illinois CS 241 Staff 6

Concept of memory mapping

n  If the virtual memory sub-system is integrated with
the file-system, it enables a simple and efficient
mechanism to load programs and data into memory

n  If disk I/O requires the transfer of large amounts of
data (one or more pages), mmap significantly
speeds up I/O by mapping a disk file directly into
user-space memory
¡  It does not suffer the overhead of syscalls like read/write
¡  User-process has direct access to kernel disk cache

Copyright ©: University of Illinois CS 241 Staff 7

CS 431 8

MMAP: a powerful syscall

Device
file

MMAP

 regular
 file

Types of mapping

Process
Address
Space

n  MMAP is used for mapping differing sorts of
objects

Anonymous
mapping

Shared
Memory
object

CS 431 9

#include <sys/mman.h>

void * mmap (void *addr, size_t len, int prot , int flags, int fd, off_t offset);

MMAP MAP_SHARED, MAP_PRIVATE, MAP_ANONYMOUS

read/write/exec permissions for the mapping

file descriptor of object to map

memory address of the mapping

CS 431 10

Types of mapping with MMAP
MMAP

Private mapping
(MAP_PRIVATE flag, POSIX)

Shared mapping
(MAP_SHARED flag, POSIX)

Anonymous mapping
(MAP_ANONYMOUS flag)

fd=-1, offset ignored
è Allocate dynamic mem.

Regular file
mapping with

file descriptor

Anonymous mapping
(MAP_ANONYMOUS flag)

fd=-1, offset ignored
è  Allocate dynamic mem.

shared after a fork()

file mapping
with

file descriptor

Regular file
mapping with

file descriptor

Device file
mapping with

file descriptor
(memory mapped I/O)

Creates a private copy-on-write mapping

Private vs Shared mapping

n  MAP_PRIVATE
¡  Updates to the mapping are not visible to other

processes mapping the same file, and are not carried
through to the underlying file.

n  MAP_SHARED
¡  Updates to the mapping are visible to other processes

that map a shared file, and are carried through to the
underlying file. The file may not actually be updated until
msync or munmap() is called

¡  Further discussion later in the semester when covering
inter-process communication (IPC)

 Copyright ©: University of Illinois CS 241 Staff 11

Portable use of MMAP

n  Set addr = NULL
¡  the kernel chooses the address at which to

create the mapping
¡  MMAP always returns a page aligned address

n  Virtual memory always allocates entire pages
¡  offset must be a multiple of the page size
¡  len must be a multiple of the page size

Copyright ©: University of Illinois CS 241 Staff 12

MUNMAP

int munmap(void *addr, size_t length);

n  munmap() system call
¡  It deletes the mappings for the specified address

range.
¡  It can unmap a smaller number of pages among

those allocated by mmap (partial unmapping)
¡  addr argument must be page aligned
¡  len must be a multiple of the page size

Copyright ©: University of Illinois CS 241 Staff 13

Example: private mapping of
regular file

Copyright ©: University of Illinois CS 241 Staff 14

#include <sys/mman.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#define PAGESIZE 4096
int main(int argc, char **argv)
{
 int fd;
 char string[] ="CS241 takeaway: mmap can be used to map files in memory";
 char *ptr;

 //open a regular file, write a string, and map it into memory
 fd = open(argv[1],O_RDWR|O_CREAT,S_IRWXU);
 write(fd, string, sizeof(string) - 1);
 ptr = (char*) mmap(NULL,PAGESIZE,PROT_READ|PROT_WRITE,MAP_PRIVATE,fd,0);
 close(fd);

 printf("pointer to memory mapped file: %p \n", ptr);
 printf("%s \n", ptr);
 ptr[2]='4'; ptr[3]='3'; ptr[4]='1'; // it triggers a copy-on-write
 printf("%s \n", ptr);
}

Example: shared mapping of
device file

Copyright ©: University of Illinois CS 241 Staff 15

#include <sys/mman.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#define PAGESIZE 4096
int main(int argc, char **argv)
{
 int fd;
 char string[]="CS241 takeaway:mmap can be used to map dev. files in memory";
 char *ptr;

 //open a raw UNUSED disk partition, write a string, and map it into memory
 fd = open("/dev/sda3", O_RDWR, S_IRWXU);
 write(fd, string, sizeof(string) - 1);
 ptr = (char*) mmap(NULL,PAGESIZE,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
 close(fd);

 printf("pointer to memory mapped file: %p \n", ptr);
 printf("%s \n", ptr);
 ptr[2]='4'; ptr[3]='3'; ptr[4]='1'; // it modifies the disk partition cache
 printf("%s \n", ptr);
}

Example: shared mapping of
device file

Copyright ©: University of Illinois CS 241 Staff 16

copy the first 256bytes of disk partition /dev/sda3 to sda3.bin and check its content!

sudo dd bs=256 count=1 if=/dev/sda3 of=./sda3.bin
ghex sda3.bin

