

Copyright ©: University of Illinois CS 241 Staff 1

Virtual Memory Wrap Up

Multi-Level Page Tables

n  Multiple levels of tables are used to look up a
physical memory address.

First Level Page Table
Second Level Page Table

Multi-Level Page Tables

n  Each virtual address can now be divided
into (n+1) different pieces for an (n) level
page table.
¡  Example: Two Level Page Table:

n  First Level Page Number (directory)
n  Second Level Page Number (page)
n  Page Offset (offset)

Multi-Level Page Tables:
class exercise

n  Given
¡  32-bit Virtual Addresses
¡  4 KB Pages
¡  12-bit First Level Page Number (directory)

n  What are the components of the address:
 0x48503423

n  Given
¡  32-bit Virtual Addresses
¡  4 KB Pages
¡  12-bit First Level Page Number (directory)

n  What are the components of the address:
 0x48503423

n  0x485(directory), 0x03(page), 0x423(offset)

Multi-Level Page Tables:
class exercise

n  Given
¡  32-bit Virtual Addresses
¡  64 KB Pages
¡  8-bit First Level Page Table Number (directory)

n  What are the components of the address:
 0x48503423

Multi-Level Page Tables:
class exercise

n  Given
¡  32-bit Virtual Addresses
¡  64 KB Pages
¡  8-bit First Level Page Table Number (directory)

n  What are the components of the address:
 0x48503423

n  0x48(directory), 0x50(page), 0x3423(offset)

Multi-Level Page Tables:
class exercise

n  Given
¡  32-bit Virtual Addresses
¡  4 KB Pages
¡  4 B page table entries

n  If every-level page table fits into a single page:
¡  How many levels are in the page table?

¡  How many bits is the index of each level?

Multi-Level Page Tables:
class exercise

n  Given
¡  32-bit Virtual Addresses
¡  4 KB Pages
¡  4 B page table entries

n  If every-level page table fits into a single page:
¡  How many levels are in the page table? 2

¡  How many bits is the index of each level? 10

Multi-Level Page Tables:
class exercise

n  Given:
¡  Each PTE is 16 B
¡  The pointer to top-level of the page

table is 0x1000.
¡  *: “PTE Content” shows the contents

of the memory if it was read as a PTE,
and only shows the address field of
the PTE.

n  Q: On system with a single-level page
table and 256 B pages:
¡  What is the physical address of the virtual

address 0x0241?

Ph. Mem Address PTE Content*

0x1000 0x2000

0x1010 0x2100

0x1020 0x2200

0x1030 0x2300

0x1040 0x2400

0x1050 0x2500

0x2000 0x1000

0x2010 0x2000

0x2020 0x3000

0x2100 0x4000

0x2110 0x5000

0x2120 0x6000

0x2200 0x7000

0x2210 0x8000

0x2220 0x9000

0x2300 0xa000

0x2310 0xb000

Class exercise

n  Given:
¡  Each PTE is 16 B
¡  The pointer to top-level of the page

table is 0x1000.
¡  *: “PTE Content” shows the contents

of the memory if it was read as a PTE,
and only shows the address field of
the PTE.

n  Q: On system with a single-level page
table and 256 B pages:
¡  What is the physical address of the virtual

address 0x0241?
è physical address: 0x2241

Ph. Mem Address PTE Content*

0x1000 0x2000

0x1010 0x2100

0x1020 0x2200

0x1030 0x2300

0x1040 0x2400

0x1050 0x2500

0x2000 0x1000

0x2010 0x2000

0x2020 0x3000

0x2100 0x4000

0x2110 0x5000

0x2120 0x6000

0x2200 0x7000

0x2210 0x8000

0x2220 0x9000

0x2300 0xa000

0x2310 0xb000

Class exercise

n  Given:
¡  Each PTE is 16 B
¡  The pointer to top-level of the page

table is 0x1000.
¡  *: “PTE Content” shows the contents

of the memory if it was read as a PTE,
and only shows the address field of
the PTE.

n  Q: On system with a two-level page
table where the index of each level is 4-
bits:
¡  What is the physical address of the virtual

address 0x1234?

Ph. Mem Address PTE Content*

0x1000 0x2000

0x1010 0x2100

0x1020 0x2200

0x1030 0x2300

0x1040 0x2400

0x1050 0x2500

0x2000 0x1000

0x2010 0x2000

0x2020 0x3000

0x2100 0x4000

0x2110 0x5000

0x2120 0x6000

0x2200 0x7000

0x2210 0x8000

0x2220 0x9000

0x2300 0xa000

0x2310 0xb000

Class exercise

n  Given:
¡  Each PTE is 16 B
¡  The pointer to top-level of the page

table is 0x1000.
¡  *: “PTE Content” shows the contents

of the memory if it was read as a PTE,
and only shows the address field of
the PTE.

n  Q: On system with a two-level page
table where the index of each level is 4-
bits:
¡  What is the physical address of the virtual

address 0x1234?
è physical address: 0x6034

Ph. Mem Address PTE Content*

0x1000 0x2000

0x1010 0x2100

0x1020 0x2200

0x1030 0x2300

0x1040 0x2400

0x1050 0x2500

0x2000 0x1000

0x2010 0x2000

0x2020 0x3000

0x2100 0x4000

0x2110 0x5000

0x2120 0x6000

0x2200 0x7000

0x2210 0x8000

0x2220 0x9000

0x2300 0xa000

0x2310 0xb000

Class exercise

What is memory trashing?

n Thrashing: as number of page frames per process
decreases, the page fault rate increases.

¡  Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out.

¡  Processes will spend all of their time blocked, waiting for pages to
be fetched from disk

¡  I/O utilization at 100% but the system is not getting much useful
work done

¡  CPU is mostly idle

Physical mem
P1 P2 P3

Why Trashing

n Computation has locality

n As number of page frames allocated to a process decreases,
the page frames available are not enough to contain the
locality of the process.

n The processes experience heavy page faulting
¡  Pages that are paged in, are used and immediately paged out.

Level of multiprogramming

n  Load control has the important function of deciding how many processes will be
resident in main memory

n  What are the trade-offs involved?

Level of multiprogramming
n  What are the trade-offs involved?

¡  If too few processes are resident in memory, it can happen that all processes
resident in memory are blocked so swapping is necessary and CPU is left idle

¡  If too many processes are resident, then the average size of the resident set of
each process will be insufficient triggering frequent page faults

Working set (1968, Denning)

n  Main idea
¡  figure out how much memory a process needs to keep most of its recent

computation in memory with very few page faults

n  How?
¡  The working set model assumes temporal locality
¡  Recently accessed pages are more likely to be accessed again

n  Thus, as the number of page frames increases above some threshold,
the page fault rate will drop dramatically

Working set (1968, Denning)

n  What we want to know: collection of pages process must have in order
to avoid thrashing
¡  This requires knowing the future. And our trick is?

n  Intuition of Working Set:
¡  Pages referenced by process during last interval of execution are

considered to comprise its working set
¡  Δ: the working set window

n  Usages of working set?
¡  Cache partitioning: give each application enough space for WS
¡  Page replacement: preferably discard non-WS pages
¡  Scheduling: a process is not executed unless its WS is in memory

Page Fault Rate vs. Allocated
Frames

N
Total number

of pages in process

W
Working Set size

Trashing

Working Set (1968, Denning)

n Strategy for sizing the resident set of a process based
on Working set
¡  Keep track of working set of each process
¡  Periodically remove from the resident set the pages that

don’t belong to working set anymore
¡  A process is scheduled for execution only if its working set is

in main memory

Working Set Size

n  Choosing
¡  Δ too small

n  Will not encompass entire locality

¡  Δ too large
n  Will encompass several localities

¡  Δ = ∞
n  Will encompass entire program

Copyright ©: University of Illinois CS 241 Staff 22

Working sets of real programs

n  Typical programs have phases

W
orking set size

transition
stable

transition
stable

transition
stable

Copyright ©: University of Illinois CS 241 Staff 23

Page Size Considerations

n  Small pages
¡  Large page tables
¡  Minimizes internal

fragmentation
¡  Good for locality of

reference

n  Large pages
¡  Small page tables
¡  Significant amounts of a

page may not be referenced
¡  locality is not well exploited

anymore and page fault rate
increases

n  Real systems (can be
reconfigured)
¡  Windows: default 8KB
¡  Linux: default 4 KB

Copyright ©: University of Illinois CS 241 Staff 24

n  Page size is a crucial parameter for performance of virtual memory

