

Copyright ©: University of Illinois CS 241 Staff 1

Virtual Memory and Paging

Application Perspective

Copyright ©: University of Illinois CS 241 Staff 2

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Lots of separate processes

Data Structure: Page Table

n  A page table is an array of page table entries
(PTEs) that maps virtual pages to physical pages
¡  Per-process kernel data structure in RAM memory

Copyright ©: University of Illinois CS 241 Staff 3

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7
VP 4 Disk

P
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page Hit

n  Reference to VM address that is in physical
memory (RAM hit)

Copyright ©: University of Illinois CS 241 Staff 4

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7
VP 4

Disk

0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

P

Page Fault

n  Reference to VM address that is not in physical
memory (RAM miss)

Copyright ©: University of Illinois CS 241 Staff 5

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7
VP 4

Disk

0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
P

Handling Page Faults

n  Page miss causes page fault (an exception)

Copyright ©: University of Illinois CS 241 Staff 6

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7
VP 4

Disk

0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
P

Handling Page Faults

n  Page fault handler selects a victim to be evicted
(here VP 4)

Copyright ©: University of Illinois CS 241 Staff 7

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7
VP 4

Disk

0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
P

Handling Page Faults

n  Loads new page into freed frame

Copyright ©: University of Illinois CS 241 Staff 8

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7

Disk

0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VP 3

P

Handling Page Faults

n  Offending instruction is restarted: page hit!

Copyright ©: University of Illinois CS 241 Staff 9

null

null

Memory resident
page table

(RAM)

Physical memory
(RAM)

VP 7

Disk

0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VP 3

P

Virtual Memory
n  Page table has to be in main memory. If each process has a 4Mb

page table, the amount of memory required to store page tables
would be unacceptably high

¡  32bits address space è 232 =4GB
¡  PTE size = 4bytes
¡  page size 4KB=212 è (232-12)x 4bytes =4MB size of page table TOO BIG!

Page number Offset
Virtual address

Page table entry (PTE)

How can we reduce memory
overhead due to paging mechanism?

P A other control bits Frame number

Page Table Size

n  Suppose
¡  4KB (212) page size, 64-bit address

space, 8-byte PTE
n  How big does the page table need to

be?

Copyright ©: University of Illinois CS 241 Staff 11

Page Table Size

n  Suppose
¡  4KB (212) page size, 64-bit address

space, 8-byte PTE
n  How big does the page table need to

be?
¡  32,000 TB!
¡  264 * 2-12 * 23 = 255 bytes

Copyright ©: University of Illinois CS 241 Staff 12

Virtual Memory
n  How can we reduce memory overhead due to paging mechanism?

n  Most virtual memory schemes use a two-level (or more) scheme to store
large page tables in kernel memory and second level can be swapped out to
disk rather than always being in physical memory
¡  First level is a root page table (always in kernel memory) and each of its entries

points to a second level page table stored in kernel memory (if allocated) or
swapped out to disk

¡  If root page table has X entries and each 2nd level page table has Y entries, then
each process can have up to X*Y pages

¡  Size of each second level page table is equal to the page size

Page number Offset
Virtual address

P A other control bits Frame number

Page table entry (PTE)

Two level hierarchical page
table

n  Example of a two-level scheme with 32-bit virtual address
¡  Assume byte-level addressing and 4-Kb pages (212)
¡  The 4-Gb (232) virtual address space is composed of 220 pages
¡  Assume each page table entry (PTE) is 4 bytes
¡  Total user page table would require 4-Mb (222 bytes); it can be divided into 210 pages

(second level page tables) mapped by a root table with 210 PTEs and requiring 4-Kb
¡  10 most significant bits of a virtual address are used as index in the root page table to

identify a second level page table
¡  If required page table is not in main memory, a page fault occurs
¡  Next 10 bits of virtual address are used as index in the page table to map virtual

address to physical address

10 bits root table index 10 bits page table index Offset

Virtual address (32 bits è 4 Gbyte virtual address space)

virtual address (32 bits)! addresses a byte in VM

Two level page table hierarchy

addresses a byte
in Physical Mem.

Two level page table hierarchy

Copyright ©: University of Illinois CS 241 Staff 16

Level 1
page table

...

Level 2
page tables VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Physical memory

(9 - 1K)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2048 allocated
VM pages for
code and data

6K unallocated
VM pages

1023 unallocated
pages
1 allocated
VM page
for the stack

32 bit addresses
4KB pages,
4-byte PTEs

Multilevel Page Tables

n  What happens on a page fault?
¡  MMU looks up index in root page table to get 2nd level

page table
¡  MMU tries to access 2nd level page table

n  May result in another page fault to load the 2nd level page
table!

¡  MMU looks up index in 2nd level page table to retrieve
physical page address and loads the page in physical
memory from disk

¡  CPU re-executes the faulty instruction and accesses
the physical memory address

Copyright ©: University of Illinois CS 241 Staff 17

Multilevel Page Tables

n  Issue
¡  Page translation has very high overhead

¡  Up to three memory accesses plus two disk I/Os

Copyright ©: University of Illinois CS 241 Staff 18

Speeding up Translation: TLB
n  Page table entries (PTEs) are cached

¡  PTEs may be evicted by other memory references
¡  PTE hit still requires a small cache access delay

n  Solution: Translation Lookaside Buffer (TLB)
¡  Small, dedicated, fast hardware cache of PTEs in MMU
¡  Contains complete page table entries for small number of pages
¡  TLB is a “set associative cache”; hence, the processor can query

in parallel the TLB entries to determine if there is a match
¡  TLB works like a memory cache and it exploits “principle of

locality”

Copyright ©: University of Illinois CS 241 Staff 19

Translation Lookaside Buffer:
example of a simplified TLB

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Page
table

VPage#
VPage#

VPage#

Note that each TLB entry must
include the virtual page # (TLB tag) as
well as the corresponding PTE

TLB Function

n  When a virtual address is presented to MMU, the hardware checks TLB by
comparing a set of entries simultaneously.

n  If match is valid, the frame # is taken from TLB without going through
page table.

n  If a match is not found
¡  MMU detects miss and does a regular page table lookup.
¡  It then evicts one old entry out of TLB and replaces it with the new one; so

next time, the PTE for that page will be found in TLB.

Page Table Problem (from
Tanenbaum)

n  Suppose
¡  32-bit virtual address space
¡  Two-level page table
¡  Virtual addresses split into a 9-bit top-level page table

field, an 11-bit second-level page table field, and an offset

n  Question: How large are the pages and how many
are there in the address space?
¡  Offset
¡  Page size
¡  # virtual pages

Copyright ©: University of Illinois CS 241 Staff 22

Page Table Problem (from
Tanenbaum)

n  Suppose
¡  32-bit address
¡  Two-level page table
¡  Virtual addresses split into a 9-bit top-level page table

field, an 11-bit second-level page table field, and an offset

n  Question: How large are the pages and how many
are there in the address space?
¡  Offset 12 bits
¡  Page size 212 bytes = 4 KB
¡  # virtual pages (232 / 212) = 220

¡  Note: driven by number of bits in offset
n  Independent of size of top and 2nd level tables

Copyright ©: University of Illinois CS 241 Staff 23

Paging as a tool for protection
and sharing
n  PTEs have permission bits
n  Page fault handler checks these before remapping

¡  If violated, send process SIGSEGV (segmentation fault)

Copyright ©: University of Illinois CS 241 Staff 24

Process i: Address READ WRITE
PPage 6 Yes No
PPage 4 Yes Yes
PPage 2 Yes

VP 0:
VP 1:
VP 2:

• • •

Process j:

Yes

SUP
No
No
Yes

Address READ WRITE
PPage 9 Yes No
PPage 6 Yes Yes
PPage 11 Yes Yes

SUP
No

No

VP 0:
VP 1:
VP 2:

Physical
Address
Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11
No

n  Process 1 creates a
shared memory object
“/shm_obj” (with
shm_open)

Copyright ©: University of Illinois CS 241 Staff 25

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Paging as a tool for protection
and sharing

File descriptor
fd

Shared memory
Object (“/shm_obj”)

n  Process 1 creates a
shared memory object
“/shm_obj” (with
shm_open)

n  Process 1 maps
“/shm_obj” in its virtual
address space using
mmap

Copyright ©: University of Illinois CS 241 Staff 26

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Paging as a tool for protection
and sharing

File descriptor
fd

Shared memory
Object (“/shm_obj”)

Copyright ©: University of Illinois CS 241 Staff 27

Shared memory
Object (“/shm_obj”)

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Paging as a tool for protection
and sharing

File descriptor
fd

n  Process 2 opens the
same shared memory
object “/shm_obj” (with
shm_open)

n  Process 2 maps
“/shm_obj” in its virtual
address space using
mmap

è Notice how the virtual
addresses can be different

Protection + Sharing Example

n  fork() creates exact copy of a process
¡  Lots more on this next week…

n  When we fork a new process, all of the memory is
duplicated for the child
¡  Does it make sense to make a copy of all of its memory?
¡  What if the child process doesn't end up touching most of

the memory the parent was using?

Copyright ©: University of Illinois CS 241 Staff 28

Performance + Sharing

n  Some processes may need to access the
same memory

n  Copy-on-Write (COW)
¡  Allows parent and child processes to initially

share the same pages in memory
¡  Only copy page if one of the processes modifies

the shared page
¡  More efficient process creation

Copyright ©: University of Illinois CS 241 Staff 29

Copy-on-Write
1.  Parent forks a child process
2.  Child gets a copy of the parent's page tables

Copyright ©: University of Illinois CS 241 Staff 30

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Parent
Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Child
Child's
page tbl

They point to the
same physical

frames!!!

Copy-on-Write
n  All pages (both parent and child) marked read-only

¡  Why?

Copyright ©: University of Illinois CS 241 Staff 31

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Parent
Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Child
Child's
page tbl

Copy-on-Write
n  What happens when the child reads the page?

¡  It just accesses same memory as parent Niiiiiice!

Copyright ©: University of Illinois CS 241 Staff 32

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Parent
Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Child
Child's
page tbl

Copy-on-Write
n  What happens when the child writes the page?

¡  Protection fault occurs (page is read-only!)‏
¡  OS copies the page and maps it R/W into the child's addr space

Copyright ©: University of Illinois CS 241 Staff 33

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Parent
Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Child
Child's
page tbl

Copy page

Copy-on-Write
n  What happens when the child writes the page?

¡  Protection fault occurs (page is read-only!)‏
¡  OS copies the page and maps it R/W into the child's addr space

Copyright ©: University of Illinois CS 241 Staff 34

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Parent
Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

RW

Child
Child's
page tbl

Copy page

Sharing Code Segments

Copyright ©: University of Illinois CS 241 Staff 35

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)‏

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)‏

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)‏

Shell #1

Shell #2

Code for shell

Same page
table mapping!
! code shares
the same
physical frames
in main memory

