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Virtual Memory and Paging   



Application Perspective 
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Data Structure: Page Table 

n  A page table is an array of page table entries 
(PTEs) that maps virtual pages to physical pages  
¡  Per-process kernel data structure in RAM memory 
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Page Hit 

n  Reference to VM address that is in physical 
memory (RAM hit) 
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Page Fault 

n  Reference to VM address that is not in physical 
memory (RAM miss) 
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Handling Page Faults 

n  Page miss causes page fault (an exception) 
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Handling Page Faults 

n  Page fault handler selects a victim to be evicted 
(here VP 4) 
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Handling Page Faults 

n  Loads new page into freed frame 
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Handling Page Faults 

n  Offending instruction is restarted: page hit! 
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Virtual Memory 
n  Page table has to be in main memory. If each process has a 4Mb 

page table, the amount of memory required to store page tables 
would be unacceptably high 

¡  32bits address space è 232 =4GB  
¡  PTE size = 4bytes  
¡  page size 4KB=212 è (232-12)x 4bytes =4MB size of page table  TOO BIG!   

 

Page number             Offset 
Virtual address 

Page table entry (PTE) 

How can we reduce memory  
overhead due to paging mechanism? 

P A  other control bits       Frame number 



Page Table Size 

n  Suppose 
¡  4KB (212) page size, 64-bit address 

space, 8-byte PTE 
n  How big does the page table need to 

be? 
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Page Table Size 

n  Suppose 
¡  4KB (212) page size, 64-bit address 

space, 8-byte PTE 
n  How big does the page table need to 

be? 
¡  32,000 TB! 
¡  264 * 2-12  * 23 = 255 bytes 
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Virtual Memory 
n  How can we reduce memory overhead due to paging mechanism? 

n  Most virtual memory schemes use a two-level (or more) scheme to store 
large page tables in kernel memory and second level can be swapped out to 
disk rather than always being in physical memory 
¡  First level is a root page table (always in kernel memory) and each of its entries 

points to a second level page table stored in kernel memory (if allocated) or 
swapped out to disk 

¡  If root page table has X entries and each 2nd level page table has Y entries, then 
each process can have up to X*Y pages 

¡  Size of each second level page table is equal to the page size  

Page number             Offset 
Virtual address 

P A  other control bits       Frame number 

Page table entry (PTE) 



Two level hierarchical page 
table 

n  Example of a two-level scheme with 32-bit virtual address 
¡  Assume byte-level addressing and 4-Kb pages (212) 
¡  The 4-Gb (232) virtual address space is composed of 220 pages 
¡  Assume each page table entry (PTE) is 4 bytes 
¡  Total user page table would require 4-Mb (222 bytes); it can be divided into 210 pages 

(second level page tables) mapped by a root table with 210 PTEs and requiring 4-Kb  
¡  10 most significant bits of a virtual address are used as index in the root page table to 

identify a second level page table 
¡  If required page table is not in main memory, a page fault occurs 
¡  Next 10 bits of virtual address are used as index in the page table to map virtual 

address to physical address 

10 bits root table index       10 bits page table index           Offset 

Virtual address (32 bits è 4 Gbyte virtual address space) 



virtual address (32 bits)! addresses a byte in VM 

Two level page table hierarchy 

addresses a byte  
in Physical Mem. 



Two level page table hierarchy 
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Multilevel Page Tables 

n  What happens on a page fault? 
¡  MMU looks up index in root page table to get 2nd level 

page table 
¡  MMU tries to access 2nd level page table 

n  May result in another page fault to load the 2nd level page 
table! 

¡  MMU looks up index in 2nd level page table to retrieve 
physical page address and loads the page in physical 
memory from disk 

¡  CPU re-executes the faulty instruction and accesses 
the physical memory address 
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Multilevel Page Tables 

n  Issue 
¡  Page translation has very high overhead 

¡  Up to three memory accesses plus two disk I/Os 
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Speeding up Translation: TLB 
n  Page table entries (PTEs) are cached 

¡  PTEs may be evicted by other memory references 
¡  PTE hit still requires a small cache access delay 

n  Solution: Translation Lookaside Buffer (TLB) 
¡  Small, dedicated, fast hardware cache of PTEs in MMU 
¡  Contains complete page table entries for small number of pages 
¡  TLB is a “set associative cache”; hence, the processor can query 

in parallel the TLB entries to determine if there is a match 
¡  TLB works like a memory cache and it exploits “principle of 

locality” 
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Translation Lookaside Buffer: 
example of a simplified TLB 
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TLB Function 

n  When a virtual address is presented to MMU, the hardware checks TLB by 
comparing a set of entries simultaneously.  

n  If match is valid, the frame # is taken from TLB without going through 
page table.  

n  If a match is not found 
¡  MMU detects miss and does a regular page table lookup. 
¡  It then evicts one old entry out of TLB and replaces it with the new one; so 

next time, the PTE for that page will be found in TLB.  



Page Table Problem (from 
Tanenbaum) 

n  Suppose 
¡  32-bit virtual address space 
¡  Two-level page table 
¡  Virtual addresses split into a 9-bit top-level page table 

field, an 11-bit second-level page table field, and an offset 

n  Question: How large are the pages and how many 
are there in the address space? 
¡  Offset 
¡  Page size 
¡  # virtual pages 
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Page Table Problem (from 
Tanenbaum) 

n  Suppose 
¡  32-bit address 
¡  Two-level page table 
¡  Virtual addresses split into a 9-bit top-level page table 

field, an 11-bit second-level page table field, and an offset 

n  Question: How large are the pages and how many 
are there in the address space? 
¡  Offset   12 bits 
¡  Page size  212 bytes = 4 KB 
¡  # virtual pages  (232 / 212) = 220 

¡  Note: driven by number of bits in offset 
n  Independent of size of top and 2nd level tables 
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Paging as a tool for protection 
and sharing 
n  PTEs have permission bits 
n  Page fault handler checks these before remapping 

¡  If violated, send process SIGSEGV (segmentation fault) 
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n  Process 1 creates a 
shared memory object     
“/shm_obj” (with 
shm_open) 
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n  Process 1 creates a 
shared memory object     
“/shm_obj” (with 
shm_open) 

n  Process 1 maps              
“/shm_obj” in its virtual 
address space using 
mmap  
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è Notice how the virtual 
addresses can be different 

 



Protection + Sharing Example 

n  fork() creates exact copy of a process 
¡  Lots more on this next week… 

n  When we fork a new process, all of the memory is 
duplicated for the child 
¡  Does it make sense to make a copy of all of its memory? 
¡  What if the child process doesn't end up touching most of 

the memory the parent was using? 
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Performance + Sharing 

n  Some processes may need to access the 
same memory 

n  Copy-on-Write (COW)  
¡  Allows parent and child processes to initially 

share the same pages in memory 
¡  Only copy page if one of the processes modifies 

the shared page 
¡  More efficient process creation 
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Copy-on-Write 
1.  Parent forks a child process 
2.  Child gets a copy of the parent's page tables 
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Copy-on-Write 
n  All pages (both parent and child) marked read-only 

¡  Why? 
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Copy-on-Write 
n  What happens when the child reads the page? 

¡  It just accesses same memory as parent .... Niiiiiice! 
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Copy-on-Write 
n  What happens when the child writes the page? 

¡  Protection fault occurs (page is read-only!)‏ 
¡  OS copies the page and maps it R/W into the child's addr space 
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Copy-on-Write 
n  What happens when the child writes the page? 

¡  Protection fault occurs (page is read-only!)‏ 
¡  OS copies the page and maps it R/W into the child's addr space 
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Sharing Code Segments 
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