Virtual Memory and Paging

Copyright ©: University of Illinois CS 241 Staff

Application Perspective

Lots of separate processes

(Reserved for OS})
Stack
Heap —
Uninitialized vars (Reserved for OS)
(BSS segment) i
Initialized vars Stack
(data segment)y [
Code
(text segment)
Heap
Uninitialized vars
(Reserved for OS) (BSS segment)
Initialized vars
B — | (data segment)
Code
(text segment)
Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment})

Code
(text segment)

[\

Copyright ©: University of Illinois CS 241 Staff

Physical RAM

. |l

Data Structure: Page Table

A page table is an array of page table entries
(PTEs) that maps virtual pages to physical pages

o Per-process kernel data structure in RAM memory

Physical page
number or
disk address

Physical memory
(RAM)

PTEO

null

— 1 — VP 7

— vt IpPo
VP 2

VP4 |PP3

Disk

VP 1

P
0
1
1
0
1
0
0
1

PTE 7

VP 2

b B .
—
—
-—
-
—
—
—
—
-
-—
—
—
—
-
—
-
—
b .
-

VP 3

Memory resident
page table
(RAM)

VP 4

™ —
—
—
—
-
—
—
—
—
-
-
-
-
—
—
—
—
-
-—
—
—
—
o
-

VP 6

Copyright ©: University of Illinois CS 241 Staff

VP 7

Page Hit

Reference to VM address that is in physical
memory (RAM hit)

Virtual address

Physical memory

Physical page (RAM)
number or T
P disk address / VP
1 o~ _ VP 4
> 1 —
0 e
] ST Disk
0 null A~ X
0 [3§ \/ R S o
PTE 7| 1 o« ‘_\ S~ VP 2
Memory resident ~ ~~<__ VP 3
page table R VP 4
(RAM) VP
VP 7

Copyright ©: University of Illinois CS 241 Staff

PP 0

PP 3

Page Fault

Reference to VM address that is not in physical

memory (RAM miss)

Virtual address

Physical memory

Physical page (RAM)
number or T
P disk address / VP
1 o~ _ VP 4
1 —
>1 0 e
] ST Disk
0 null A T~
~ VP 1
0 (\/ S~ S o
PTE 7 [1 o« "~ BRENR VP2
Memory resident \\\ vP3
page table TSl VP 4
(RAM) VP 6
VP 7

Copyright ©: University of Illinois CS 241 Staff

PP 0

PP 3

Handling Page Faults

Page miss causes page fault (an exception)

Virtual .'Iaddress

Physical memory

Copyright ©: University of Illinois CS 241 Staff

Physical page (RAM)
number or S0
P disk address / VP
1 o~ _ VP 4
1 —
-=-=3]p e_
] ST Disk
0 null A T~
~ VP 1
O (\/ S~ S o
PTE 7 [1 o« "~ BRENR VP2
Memory resident ~ ~~<__ vP3
page table S~o VP 4
(RAM) Ve
VP 7

PP 0

PP 3

Handling Page Faults

Page fault handler selects a victim to be evicted

(here VP 4)

Virtual .'Iaddress

Copyright ©: University of Illinois CS 241 Staff

PP 0

PP 3

_ Physical memory
Physical page (RAM)
number or T
P disk address / VP
1 o~ _ VP 4
1 —
-==30 e_
] ST Disk
0 null A T~
< VP 1
O (\/ S~ S o
PTE 7 [1 o« -1 S~ol VP 2
Memory resident ~ ~~<__ VP 3
page table S~o VP 4
(RAM) VP
VP 7

Handling Page Faults

Loads new page into freed frame

Virtual .'Iaddress

Physical memory

Physical page (RAM)
number or T
P disk address / VP
1 — VP 3
1 —
el « 1 .
0 o _ Disk
0 null >~ A
VP 1
0 o [~
PTE 7| 1 o~ sl VP 2
Memory resident ~ ~~<_ >~ VP 3
page table T~ VP 4
(RAM) VP
Copyright ©: University of Illinois CS 241 Staff VP 7

PP 0

PP 3

Handling Page Faults

Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (RAM)
number or T
P disk address / VP
1 — VP 3
1 —
> 1 _
0 o _ Disk
0 null >~ A
VP 1
0 o [~
PTE 7| 1 o~ sl VP 2
Memory resident ~ ~~<_ >~ VP 3
page table T~ VP 4
(RAM) VP
Copyright ©: University of Illinois CS 241 Staff VP 7

PP 0

PP 3

Virtual Memory

Page table has to be in main memory. If each process has a 4Mb
page table, the amount of memory required to store page tables
would be unacceptably high

o 32bits address space = 232 =4GB

o PTE size = 4bytes

o page size 4KB=212 =» (232-12)x 4bytes =4MB size of page table TOO BIG!

How can we reduce memory
overhead due to paging mechanism?

Virtual address
Page number Offset

Page table entry (PTE)
P|A other control bits Frame number][

[Page Table Size

Suppose

o 4KB (2'%) page size, 64-bit address
space, 8-byte PTE

How big does the page table need to
be?

Copyright ©: University of Illinois CS 241 Staff

[Page Table Size

Suppose

o 4KB (2'%) page size, 64-bit address
space, 8-byte PTE

How big does the page table need to

be?

o 32,000 TB!

o 264 * 2-12 * 23 = 255 hyteg

Copyright ©: University of Illinois CS 241 Staff

Virtual Memory

How can we reduce memory overhead due to paging mechanism?

Most virtual memory schemes use a two-level (or more) scheme to store

large page tables in kernel memory and second level can be swapped out to

disk rather than always being in physical memory

o First level is a root page table (always in kernel memory) and each of its entries
points to a second level page table stored in kernel memory (if allocated) or
swapped out to disk

o If root page table has X entries and each 2" |evel page table has Y entries, then
each process can have up to X*Y pages

o Size of each second level page table is equal to the page size

Virtual address
Page number Offset

Page table entry (PTE)
P|A other control bits Frame number][

O O O O

Two level hierarchical page
table

Example of a two-level scheme with 32-bit virtual address
Assume byte-level addressing and 4-Kb pages (212)
The 4-Gb (232) virtual address space is composed of 220 pages
Assume each page table entry (PTE) is 4 bytes

Total user page table would require 4-Mb (222 bytes); it can be divided into 210 pages
(second level page tables) mapped by a root table with 21° PTEs and requiring 4-Kb

10 most significant bits of a virtual address are used as index in the root page table to
identify a second level page table

If required page table is not in main memory, a page fault occurs

Next 10 bits of virtual address are used as index in the page table to map virtual
address to physical address

Virtual address (32 bits = 4 Gbyte virtual address space)
10 bits root table index 10 bits page table index Offset

Two level page table hierarchy

virtual address (32 bits)= addresses a byte in VM

31 22 21 12 11 0
Directory lable Offset

A12 4-KByte Page

, ” Pace Table | plp addresses a byte
/10 /10 g nysical Address| n, physical Mem.
Page Directory
» Page-Table Entry /2 >
—» Directory Entry >~
»
,+’ 32° 1024 PDE » 1024 PTE = 2%° Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.][

Two level page table hierarchy

4-byte PTEs

Copyright ©: University of Illinois CS 241 Staff

| evel 1 Level 2 PhySICf//P Igemg\ry
age table age tables
PTE 0 /,p PTE 0 2048 allocated
VP 1023
PTE 1 > VM pages for
PTE 2 (nall) PTE 1023 VP 1024 code and data
PTE 3 (null) = '5'047)
PTE 5 (null)
PTE 6 (null PTE 1023 6K unallocated
PTE 7 (null) Gap VM pages
PTE 8 .
1023 null
(9 - 1K) PTEs Y,
null PTEs STE 1023 1053 1023 unallocated
\ unallocated pages
32 bit addresses V‘fg:is 1 allocated
4KB pages, VM page

for the stack 16][

Multilevel Page Tables

What happens on a page fault?
o MMU looks up index in root page table to get 2"d level
page table

o MMU tries to access 2" |evel page table

May result in another page fault to load the 2"d level page
table!

o MMU looks up index in 2" |evel page table to retrieve
physical page address and loads the page in physical
memory from disk

o CPU re-executes the faulty instruction and accesses
the physical memory address

Copyright ©: University of Illinois CS 241 Staff 17]

Multilevel Page Tables

Issue
o Page translation has very high overhead
o Up to three memory accesses plus two disk 1/Os

Copyright ©: University of Illinois CS 241 Staff 18]

Speeding up Translation: TLB

Page table entries (PTEs) are cached

O

O

PTEs may be evicted by other memory references
PTE hit still requires a small cache access delay

Solution: Translation Lookaside Buffer (TLB)

O

O

O

Small, dedicated, fast hardware cache of PTEs in MMU
Contains complete page table entries for small number of pages

TLB is a “set associative cache”; hence, the processor can query
in parallel the TLB entries to determine if there is a match

TLB works like a memory cache and it exploits “principle of
locality”

Copyright ©: University of Illinois CS 241 Staff 19]

Translation Lookaside Buffer:
example of a simplified TLB

Virtual address

VPage # ‘ offset

——————————————

>| VPage# |PPage# |
> VPage# |PPage# |

Miss

L Bl

- VPaget [PPagett | ., Page
| TLB table
Hit

PPage # ‘ offset

Note that each TLB entry must
include the virtual page # (TLB tag) as Physical address
well as the corresponding PTE

TLB Function

When a virtual address is presented to MMU, the hardware checks TLB by
comparing a set of entries simultaneously.

If match is valid, the frame # is taken from TLB without going through
page table.

If a match is not found
o MMU detects miss and does a regular page table lookup.

o It then evicts one old entry out of TLB and replaces it with the new one; so
next time, the PTE for that page will be found in TLB.

Page Table Problem (from
Tanenbaum)

Suppose

o 32-bit virtual address space

o Two-level page table

o Virtual addresses split into a 9-bit top-level page table
field, an 11-bit second-level page table field, and an offset

Question: How large are the pages and how many

are there in the address space?

o Offset

o Page size

o # virtual pages

Copyright ©: University of Illinois CS 241 Staff 22]

Page Table Problem (from
Tanenbaum)

Suppose

o 32-bit address

o Two-level page table

o Virtual addresses split into a 9-bit top-level page table
field, an 11-bit second-level page table field, and an offset

Question: How large are the pages and how many

are there in the address space?

o Offset 12 bits

o Page size 212 bytes = 4 KB

o # virtual pages (232/212) =220

o Note: driven by number of bits in offset

Independent of size of top and 2"d level tables ‘
Copyright ©: University of Illinois CS 241 Staff 23]

Paging as a tool for protection
and sharing

PTEs have permission bits

Page fault handler checks these before remapping
o If violated, send process SIGSEGV (segmentation fault)

Physical
Process i: SUP READ WRITE Address Address
VPO:! No | Yes No PPage 6 Space
VP 1:] No Yes | Yes PPage 4
VP 2] Yes | Yes | Yes PPage 2 —> PP2
PP 4
PP 6
Process j: SUP READ WRITE Address Y
VPO:l No | Yes | No PPage 9 / — PP9
VP 1:[No Yes | Yes PPage 6
VP2: No | Yes | Yes PPage 11 —> PP 11

Copyright ©: University of lllinois CS 241 Staff

Paging as a tool for protection
and sharing

Process 1 Physical Process 2 Process 1 creates a
virtual memory memory virtual memory shared memory object
“/shm_obj” (with
shm_open)

\ \
\ \
AY AY
\ \
\ \
\
\
\
\
\
\
\

File descriptor hared memory
fd Object (“/shm_obj”) Copyright ©: University of Tllinois CS 241 Staff 25]

Paging as a tool for protection
and sharing

Process 1 Physical Process 2 Process 1 creates ?
virtual memory memory virtual memory shared memory object

“/shm_obj” (with
shm_open)

S Process 1 maps

kT “/shm_obj” in its virtual
\ address space using
mmap

File descriptor 4ared memory
fd Object ("/shm_0Dbj") copyright ©: University of Tiinois € 241 Staff 26]

Paging as a tool for protection
and sharing

Process

virtual memory

1

File descriptor
fd

Process 2
virtual memory

Physical
memory

Shared memory

Object (*/shm_0Dbj") copyright ©: university of Tlinois s 241 Staff

Process 2 opens the
same shared memory
object “/shm_obj” (with
shm_open)

Process 2 maps
“/shm_obj” in its virtual
address space using
mmap

=» Notice how the virtual
addresses can be different

N 1

Protection + Sharing Example

fork () creates exact copy of a process

o Lots more on this next week...

When we fork a new process, all of the memory is
duplicated for the child

o Does it make sense to make a copy of all of its memory?

o What if the child process doesn't end up touching most of
the memory the parent was using?

Copyright ©: University of Illinois CS 241 Staff

Performance + Sharing

Some processes may need to access the
same memory

Copy-on-Write (COW)
o Allows parent and child processes to initially
share the same pages in memory

o Only copy page if one of the processes modifies
the shared page

o More efficient process creation

Copyright ©: University of Illinois CS 241 Staff 29]

Copy-on-Write
Parent forks a child process
Child gets a copy of the parent's page tables

Parent Child
Parent's Child's
(Reserved for OS) page tbl page tbl (Reserved for OS)
Stack Stack
v v
t t
Heap [_P* *‘— Heap H
Uninitialized N / Uninitialized
vars vars
Initialized vars Initialized vars
Code Code

They point to the
same physical o
framesl!!! Copyright ©: University of Illinois CS 241 Staff

Copy-on-Write

All pages (both parent and child) marked read-only

o Why?

Parent

(Reserved for OS)

Stack

v
A

Heap B

Uninitialized
vars

Initialized vars

Code

Parent's
page tbl

_,*

7

Child

Child’s
page tbl

(Reserved for OS)

Stack

v
A

Heap H

.

Uninitialized
vars

Initialized vars

Code

Copyright ©: University of Illinois CS 241 Staff

Copy-on-Write

What happens when the child reads the page?

o Itjust accesses same memory as parent Niiiiiice!

Parent

(Reserved for OS)

Stack

v
A

Heap B

Uninitialized
vars

Initialized vars

Code

Parent's
page tbl

_,*

7

Child

Child’s
page tbl

(Reserved for OS)

Stack

v
A

.

Heap H

Uninitialized
vars

Initialized vars

Code

Copyright ©: University of Illinois CS 241 Staff

Copy-on-Write

What happens when the child writes the page?
o Protection fault occurs (page is read-only!)
o OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

v
A

Heap B

Uninitialized
vars

Initialized vars

Code

Parent's
page tbl

_,*

N
Copy page

Child

Child’s
page tbl

(Reserved for OS)

Stack

v
A

Heap H

.

Uninitialized
vars

Initialized vars

Code

Copyright ©: University of Illinois CS 241 Staff

Copy-on-Write

What happens when the child writes the page?

Protection fault occurs (page is read-only!)
OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

v
A

Heap B

Uninitialized
vars

Initialized vars

Code

Parent's
page tbl

_,*

N
Copy page

Child

gggg ?bl (Reserved for OS)
Stack
v
f
9\’ - Heap [
/ Uninitialized
vars

Initialized vars

Code

Copyright ©: University of Illinois CS 241 Staff

Sharing Code Segments

Same page
table mapping!
=» code shares
the same
physical frames
in main memory

N

Shell #1
(Reserved for OS)
v Shell #2
4
Heap (Reserved for OS)
Uninitialized
vars Stack
Initialized vars v
Cod "
ode Heap
Uninitialized
vars

Initialized vars

Code

Copyright ©: University of lllinois CS 241 Staff

Code for shell

