

Copyright ©: University of Illinois CS 241 Staff 1

Virtual Memory

Address Space Abstraction

n  Program address space
¡  All memory data
¡  i.e., program code, stack, data segment

n  Hardware interface (physical reality)
¡  Computer has one small, shared memory

n  Application interface (illusion)
¡  Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 2

How can
we close
this gap?

Address Space Illusions

n  Address independence
¡  Same address can be used in different address

spaces yet remain logically distinct
n  Protection

¡  One address space cannot access data in
another address space

n  Virtual memory
¡  Address space can be larger than the amount of

physical memory on the machine

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Illusions:
Virtual Memory

Illusion

Giant (virtual) address space
Protected from others

(Unless you want to share it)
More whenever you want it

Reality

Many processes sharing
one (physical) address space

Limited memory

Copyright ©: University of Illinois CS 241 Staff 4

Today:
An introduction to Virtual Memory:

The memory space seen by your programs!

Multi-Programming

n  Multiple processes in memory at the same
time

n  Goals
1.  Layout processes in memory as needed
2.  Protect each process’s memory from

accesses by other processes
3.  Minimize performance overheads
4.  Maximize memory utilization

Copyright ©: University of Illinois CS 241 Staff 5

Copyright ©: Nahrstedt, Angrave, Abdelzaher 6 6

OS & memory management
n  Main memory is normally divided into two parts: kernel memory and

user memory

n  In a multiprogramming system, the “user” part of main memory
needs to be divided to accommodate multiple processes.

n  The user memory is dynamically managed by the OS (known as
memory management) to satisfy following requirements:
¡  Protection
¡  Relocation
¡  Sharing
¡  Memory organization (main mem. (RAM) + secondary mem. (Hard-Disk))

è since available RAM memory is often not big enough to accommodate all
the memory needs of user processes, some processes (or part of it) might be
swapped to disk when they are not executing.

Mapping logical to physical
addresses

Copyright ©: University of Illinois CS 241 Staff 7

Code segment

Data segment

Heap

Stack

Physical RAM

MMU

How does this thing
work??

8

n  Paging
¡  Suppose to partition physical main memory in small equal-size chunks

(frames)
¡  Suppose each process memory is also divided into small fixed-size

chunks (pages) of the same size
¡  Pages of a process can be mapped to available frames in physical

memory

n  We would like to allocate non-contiguous physical
frames to a process
¡  can we do that?
¡  if this is the case, is the system suffering internal or external

fragmentation?

Virtual Memory today:
Paging

Copyright ©: University of Illinois CS 241 Staff

9

n  We would like to allocate non-contiguous frames to a process

n  We can implement such a scheme as follows:

¡  The programmer uses a contiguous logical address space (Virtual
Memory divided in pages)

¡  System uses a process page table to identify page<->frame mapping
for each process

¡  Translation from logical to physical address is performed by MMU at
run-time

¡  A logical address is composed of (page #, offset); the processor uses
active process page table to produce a physical address (frame #,
offset)

Copyright ©: University of Illinois CS 241 Staff

Paging

Paging

n  Solve the external
fragmentation
problem by using
fixed-size chunks
of virtual and
physical memory
¡  Virtual memory

unit called a page
¡  Physical memory

unit called a frame
(or sometimes
page frame)

Copyright ©: University of Illinois CS 241 Staff 10

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)

…

page 3
...

...

Application Perspective

n  Application believes it has a single, contiguous
(virtual) address space ranging from 0 to 2P – 1
bytes
¡  Where P is the number of bits in a pointer (e.g., 32 bits)

n  In reality, process frames are scattered across
physical memory
¡  This mapping is invisible to the program, and not even

under its control!

Copyright ©: University of Illinois CS 241 Staff 11

Example of Virtual Address space:
32 bits pointers è 4 Gbyte virtual address space)

Application Perspective

Copyright ©: University of Illinois CS 241 Staff 12

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Lots of separate processes

Translation process

n  Virtual-to-physical address translation performed by
MMU
¡  Virtual address is broken into a virtual page number and

an offset
¡  Mapping from virtual page to physical frame provided by a

page table (which is stored in memory)

Copyright ©: University of Illinois CS 241 Staff 13

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

Translation process

Copyright ©: University of Illinois CS 241 Staff 14

page
frame 0

page
frame 1

page
frame 2

page
frame Y

page
frame 3

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

...
 Page table entry

0x
de

ad
b

0xeef

Translation process

if (virtual page is invalid or non-present or protected)
 trap to OS fault handler
else
 physical frame # = pageTable[virtpage#].physPageNum

n  Each virtual page can be in physical memory or
swapped out to disk (called “paged out” or just
“paged”), or invalid (VP was not mapped!)

n  What must change on a context switch?
¡  Could copy entire content of table, but this would be slow
¡  Instead use an extra layer of indirection: Keep pointer to

current page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 15

Where is the page table?

n  Page Tables store the virtual-to-physical address
mappings

n  Where are they located?
¡  In memory!

n  OK, then. How does the MMU access them?
¡  The MMU has a special register called the page table

base pointer
¡  This points to the physical memory address of the top of

the page table for the currently-running process

Copyright ©: University of Illinois CS 241 Staff 16

Where is the page table?

Copyright ©: University of Illinois CS 241 Staff 17

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Paging

n  Page Table Entries have read, write,
execute protection bits to protect memory
¡  Check is done by hardware during access
¡  Can give shared memory location different

protections from different processes by having
different page table protection access bits

n  How does the processor know that a virtual
page is in memory?
¡  Present (P) bit tells the hardware that the virtual

address is present or non-present
Copyright ©: University of Illinois CS 241 Staff 18

Valid (or Mapped) vs. Present

n  Present
¡  Virtual page is in memory
¡  NOT an error for a program trying to access

non-present page

n  Valid (or Mapped)
¡  Virtual page has been mapped in the process

virtual address space; hence, it is legal for the
program to access it

¡  Remember: 32 bits pointers è 4 Gbyte virtual
address space (not all of it will be mapped!)

Copyright ©: University of Illinois CS 241 Staff 19

Page Table Entry

n  Typical PTE format (depends on CPU architecture!)

n  Various bits accessed by MMU on each page access:
¡  Dirty bit: Indicates whether a page is “dirty” (modified)
¡  Accessed bit: Indicates whether a page has been accessed

(read or written)
¡  Present bit: Page is present in physical memory (1) or not (0)
¡  Protection bits: Specify if page is readable, writable, or

executable
¡  Page frame number: Physical location of page in RAM
¡  Avail: Available for system programmers

Copyright ©: University of Illinois CS 241 Staff 20

page frame number prot D A P

20 2 1 1 1

avail

Page Table Entry

n  Typical PTE format (depends on CPU architecture!)

n  Present bit = 0: Page is not present in physical memory;
hence, it was swapped to disk.

n  The Page Table Entry contains information about page
location in secondary storage (disk).

Copyright ©: University of Illinois CS 241 Staff 21

Available for OS (page location in secondary storage)
P
=0

31 1

Page Faults

n  What happens when a program accesses a virtual
page that is not present in physical memory?
¡  Hardware triggers a page fault

n  Page fault handler
¡  Find any available free physical frame
¡  If none, evict some present page to disk
¡  Allocate a free physical frame
¡  Load the faulted virtual page from disk to the prepared

physical frame
¡  Modify the page table

Copyright ©: University of Illinois CS 241 Staff 22

Advantages of Paging

n  Simplifies physical memory management
¡  OS maintains a list of free physical page frames
¡  To allocate a physical frame, just remove an

entry from this list
n  No external fragmentation!

¡  Virtual pages from different processes can be
interspersed in physical memory

¡  No need to allocate physical frames in a
contiguous fashion

Copyright ©: University of Illinois CS 241 Staff 23

Advantages of Paging

n  Allocation of memory can be performed at a
(relatively) fine granularity
¡  Only allocate physical memory to those parts of

the address space that require it
¡  Can swap unused pages out to disk when

physical memory is running low
¡  Idle programs won't use up a lot of memory

(even if their address space is huge!)

Copyright ©: University of Illinois CS 241 Staff 24

Paging Example

Copyright ©: University of Illinois CS 241 Staff 25

3 1
2
3
4

Disk

Physical memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Physical Memory Request Address within
Virtual Memory Page 3

Paging Example

Copyright ©: University of Illinois CS 241 Staff 26

3 1
1 2

3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Request Address within
Virtual Memory Page 1

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 27

3 1
1
6

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Request Address within
Virtual Memory Page 6

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 28

3 1
1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Request Address within
Virtual Memory Page 2

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 29

3 1
1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Request Address within
Virtual Memory Page 8

What happens when there
is no more space in
physical memory?

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 30

3 1
1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Store Virtual Memory
Page 1 to disk swap area

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 31

3 1

6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Process request for Address
within Virtual Memory Page 8

Physical memory

Physical Memory

Paging Example

Copyright ©: University of Illinois CS 241 Staff 32

3 1
8
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Load Virtual Memory
Page 8 to physical memory

Physical memory

Physical Memory

Page Eviction: When?

n  When do we decide to evict a page from
memory?
¡  Usually, at the same time that we are trying to

allocate a new physical page
¡  However, the OS keeps a pool of “free frames”

around, even when memory is tight, so that
allocating a new page can be done quickly

¡  The process of evicting pages to disk is then
performed in the background

Copyright ©: University of Illinois CS 241 Staff 33

Page Eviction: Which page?

n  Hopefully, swap out a less-useful page
¡  Dirty pages require writing back to disk, clean

pages don’t
¡  Where do you write? To “disk swap partition”

n  Goal: swap out the page that’s least useful
n  Problem: how do you determine utility?

¡  Heuristic: temporal locality exists
¡  Swap out pages that aren’t likely to be used

again

Copyright ©: University of Illinois CS 241 Staff 34

Basic Page Replacement

n  How do we replace pages?
¡  Find the location of the desired page on disk
¡  Find a free frame

n  If there is a free frame, use it
n  If there is no free frame, use a page replacement

policy to select a victim page

¡  Copy the desired page into the (newly) free
frame. Update the page and frame tables.

¡  Re-execute the instruction that caused the page
fault

Copyright ©: University of Illinois CS 241 Staff 35

Page Replacement Strategies

n  Random page replacement
¡  Choose a page randomly

n  FIFO - First in First Out
¡  Replace the page that has

been in primary memory
the longest

n  LRU - Least Recently Used
¡  Replace the page that has

not been used for the
longest time

n  LFU - Least Frequently
Used
¡  Replace the page that is

used least often
n  NRU - Not Recently Used

¡  An approximation to LRU.
n  Working Set

¡  Keep in memory those
pages that the process is
actively using.

Copyright ©: University of Illinois CS 241 Staff 36

Segmentation was once an
option: deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 37

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows
dynamically

grows
dynamically

physical
memory

base + bound

base

Segmentation was once an
option: deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 38

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows
dynamically

grows
dynamically

physical
memory

base + bound

base

n  This example is only an
intuitive view of (the real)
segmentation

n  Problem: wasted space
¡  And must have virtual mem ≤

phys mem

