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Memory Allocation & Heap 



Memory allocation within a 
process 

n  Stack data structure 
¡  Function calls follow LIFO semantics 
¡  So we can use a stack data structure to 

represent the process’s stack – no 
fragmentation! 

n  Heap: malloc, free 
¡  This is a much harder problem 
¡  Need to deal with fragmentation 
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MP2! 



malloc Constraints 

n  Applications 
¡  Can issue arbitrary sequence of malloc 

and free requests 
¡  free request must be to a malloc’d  

block 
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malloc Constraints 

n  Allocators 
¡  Can’t control number or size of allocated blocks 
¡  Must respond immediately to malloc requests 

n  i.e., can’t reorder or buffer requests 
¡  Must allocate blocks from free memory 
¡  Must align blocks so they satisfy all requirements 

n  8 byte alignment for libc malloc on Linux boxes 
¡  Can manipulate and modify only free memory 
¡  Can’t move the allocated blocks once they are 

malloc’d 
n  i.e., compaction is not allowed (why not?) 
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Goal 1: Speed 

n  Allocate fast! 
¡  Minimize overhead for both allocation and 

deallocation 
n  Maximize throughput 

¡  Number of completed malloc or free requests 
per unit time 

¡  Example 
n  5,000 malloc calls and 5,000 free calls in 10 

seconds 
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Goal 1: Speed 

n  Allocate fast! 
¡  Minimize overhead for both allocation and 

deallocation 
n  Maximize throughput 

¡  Number of completed malloc or free requests 
per unit time 

¡  Example 
n  5,000 malloc calls and 5,000 free calls in 10 

seconds 
n  Throughput is 1,000 operations/second 
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Goal 1: Speed 

n  BUT 
¡  A fast allocator may not be efficient in 

terms of memory utilization 
¡  Faster allocators tend to be “sloppier” 

n  Example: don’t look through every free block 
to find the perfect fit 
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Goal 2: Memory Utilization 

n  Allocators usually 
waste some memory 
¡  Extra metadata or 

internal structures used 
by the allocator itself 
n  Example: keeping track 

of where free memory is 
located 

¡  Chunks of heap 
memory that are 
unallocated (fragments) 
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Goal 2: Memory Utilization 

n  Memory utilization = 
¡  The total amount of 

memory allocated to the 
application divided by 
the total heap size 

n  Ideal 
¡  utilization = 100% 

n  In practice 
¡  try to get close to 100% 
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Fragmentation 

n  Poor memory utilization caused by 
unallocatable memory 
¡  internal fragmentation 
¡  external fragmentation 

n  malloc fragmentation  
¡  When allocating memory to applications 
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Internal fragmentation 

n  Payload is smaller than block size 

n  Caused by  
¡  Overhead of maintaining heap data structures 
¡  Padding for alignment purposes 
¡  Explicit policy decisions  

(e.g., to return a big block to satisfy a small request) 
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Payload Internal  
fragmentation 

Block 

Internal  
fragmentation 



Experiment 

n  Does libc’s malloc have internal 
fragmentation?  How much? 

n  How would you test this? 
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Run Example 



fragtest 

#include <stdio.h> 
#include <stdlib.h> 
 
int main(int argc, char** argv) { 
 char* a = (char*) malloc(1); 
 char* b = (char*) malloc(1); 
 char* c = (char*) malloc(100); 
 char* d = (char*) malloc(100); 

 
 printf("a = %p\n b = %p\n c = %p\n d = %p\n", 
a,b,c,d); 

} 
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What output would 
you expect? 



fragtest - Output 
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a = malloc(1); b = malloc(1); 
c = malloc(100); d = malloc(100); 

 
a = 0xdb64010 
b = 0xdb64030 
c = 0xdb64050 
d = 0xdb640c0 

0x20 = 32 ≠ 1 
0x20 = 32 ≠ 1 

0x70 = 112 ≠ 100 



External Fragmentation 

n  There is enough aggregate heap memory, 
but no single free block is large enough 
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p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) 

Depends on the pattern of future requests 
Difficult to plan for 

Oops! (what would happen now?) 



Conflicting performance goals 

n  Throughput vs. Utilization  
¡  Difficult to achieve simultaneously 
¡  Faster allocators tend to be “sloppier” 

with memory usage 
¡  Space-efficient allocators may not be 

very fast 
n  Tracking fragments to avoid waste generally 

results in longer allocation times 
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Implementation issues you 
need to solve! 

n  How do I know how much memory to free 
just given a pointer? 
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Keep the length of 
the block in the 
header preceding 
the block 
 
Requires an extra 
word for every 
allocated block 



Keeping Track of Free Blocks 

n  One of the biggest jobs of an allocator is knowing 
where the free memory is 

n  The allocator's approach to this problem affects: 
¡  Throughput – time to complete a malloc() or free() 
¡  Space utilization – amount of extra metadata used to track 

location of free memory 

n  There are many approaches to free space 
management 
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Implicit Free Lists 

n  For each block we need 
both size and allocation 
status 
¡  Could store this information in 

two words: wasteful! 

n  Standard trick 
¡  If blocks are aligned, low-order 

address bits are always 0 
¡  Why store an always-0 bit? 

Use it as allocated/free flag! 
¡  When reading size word, must 

mask out this bit 
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Size 

1 word 

Payload 

a = 1: Allocated block   
a = 0: Free block 
Size: block size 
 
Payload: application data 
(allocated blocks only) 
 

a 

Optional 
padding 



Implicit Free Lists 

n  No explicit structure tracking location of free/
allocated blocks. 
¡  Rather, the size word (and allocated bit) in each 

block form an implicit “block list” 
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Implicit Free Lists: Free Blocks 

n  How do we find a free block in the heap? 
¡  Start scanning from the beginning of the heap. 
¡  Traverse each block until (a) we find a free block 

and (b) the block is large enough to handle the 
request. 

¡  This is called the first fit strategy 
n  Could also use best fit, etc 
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Implicit Free Lists: Allocating 
Blocks 

n  What if the allocated space is smaller than 
free space? 

n  Split free blocks 
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p 



Implicit Free Lists: Freeing a 
Block 

n  How do you free a block? 
n  Simplest implementation: 

¡  Only need to clear allocated flag 
n  Problem? 
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Implicit Free Lists: Freeing a 
Block 

n  Only need to clear allocated flag 
n  Problem? 

¡  False fragmentation 
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free(p) 

16 8 16 8 

p 

16 

16 16 8 16 8 

malloc(20) Oops! There’s enough free space 
but allocator won’t find it! 



Implicit Free Lists: Coalescing 
Blocks 

n  Join (coalesce) with next and previous 
block if they are free 
¡  Coalescing with next block 
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16 8 16 8 

free(p) p 

16 16 8 

16 

24 

But how do we coalesce 
with previous block? 



Implicit Free Lists: 
Bidirectional Coalescing 

n  Boundary tags [Knuth73] 
¡  Replicate size/allocated word at tail end of all blocks 
¡  Lets us traverse list backwards, but needs extra space 
¡  General technique: doubly linked list 
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Implicit Free Lists: 
Bidirectional Coalescing 

n  Boundary tags [Knuth73] 
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size 

1 word 

Format of 
allocated and 
free blocks 

payload and 
padding 

a = 1: Allocated block   
a = 0: Free block 
Size: block size 
 
payload: application data 
(allocated blocks only) 
 

a 

size a Boundary tag 
  (footer) 

16 16 16 16 24 16 24 16 

Header 



Implicit Free Lists: Summary 

n  Implementation 
¡  Very simple 

n  Allocation 
¡  linear-time worst case 

n  Free 
¡  Constant-time worst case—even with coalescing 

n  Memory usage 
¡  Will depend on placement policy 
¡  First fit, best fit,… 
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Implicit Free Lists: Summary 

n  Not used in practice for malloc/free 
¡  linear-time allocation is actually slow! 
¡  But used in some special-purpose applications 

n  However, concepts of splitting and boundary 
tag coalescing are general to all allocators 
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Alternative Approaches 

n  Explicit Free List 
n  Segregated Free Lists 

¡  Buddy allocators 
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Explicit Free List 

n  Linked list among free blocks 
n  Use data space for link pointers 

¡  Typically doubly linked 
¡  Still need boundary tags for coalescing 
¡  Links aren’t necessarily in address order! 
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16 16 16 16 24 24 16 16 16 16 

Forward link 

Back link 

A B 

C 



Explicit Free List: Inserting 
Free Blocks 
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n  Where should you put the newly freed 
block? 
¡  LIFO (last-in-first-out) policy 

n  Insert freed block at beginning of free list 
n  Pro 

¡  Simple, and constant-time 

n  Con 
¡  Studies suggest fragmentation is high 



Explicit Free List: Inserting 
Free Blocks 
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n  Where should you put the newly freed 
block? 
¡  Address-ordered policy 

n  Insert so list is always in address order 
¡  i.e. addr(pred) < addr(curr) < 

addr(succ) 

n  Con  
¡  Requires search (using boundary tags); slow! 

n  Pro 
¡  studies suggest fragmentation is better than LIFO 



Segregated Free Lists 

n  Each size class has its own collection 
of blocks 
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12 

16 

20-32 

36-64 



Segregated Free Lists 

n  Each size class has its own collection 
of blocks 
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4-8 

12 

16 

20-32 

36-64 

n  Often separate size class for every 
small size (8, 12, 16, …) 

n  For larger, typically have size class 
for each power of 2 

What is the point of having 
separate lists? 



Buddy Allocators 

n  Special case of segregated free lists 
¡  Limit allocations to power-of-two sizes 
¡  Can only coalesce with "buddy“ 

n  Who is other half of next-higher power of two 

n  Clever use of low address bits to find 
buddies 

n  Problem 
¡  Large powers of two result in large internal 

fragmentation (e.g., what  if you want to allocate 
65537 bytes?) 
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Buddy System 

n  Approach 
¡  Minimum allocation size = smallest frame 
¡  Maintain freelist for each possible frame size  

n  Power of 2 frame sizes from min to max 
¡  Initially one block = entire buffer 
¡  If two neighboring frames (“buddies”) are free, combine 

them and add to next larger freelist 
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Buddy System Example 
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128 Free 



Buddy System Example 
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128 Free 

Request A: 16 

64 Free 64 Free 

32 Free 32 Free 

16 A 16 Free 32 Free 

64 Free 

64 Free 



Buddy System Example 
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128 Free 

Request B: 32 

16 A 16 Free 32 Free 64 Free 32 B 



Buddy System Example 
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128 Free 

Request C: 8 

16 A 16 Free 32 B 64 Free 

16 A 8 
C 32 B 64 Free 8 



Buddy System Example 
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Request A frees 

16 Free 8 
C 32 B 64 Free 8 



Buddy System Example 

n  Advantage 
¡  Minimizes external fragmentation 

n  Disadvantage 
¡  Internal fragmentation when not 2^n request 

Copyright ©: University of Illinois CS 241 Staff 43 

Request C frees 

16 Free 8 32 B 64 Free 8 

16 Free 32 B 64 Free 16 Free 

32 B 64 Free 32 Free 



So what should I do for MP2? 
n  Designs sketched here are all reasonable 
n  But, there are many other possible designs 
n  So, implement anything you want! 
n  Suggestion:  
è Before you start coding, REALLY spend 
time thinking about 1) your mem. manag. 
design; 2) its correctness; 3) the assumptions 
your code relies on; 4) performance trade-offs 
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Happy coding! 


