
 
 

Copyright ©: University of Illinois CS 241 Staff 1 

Memory Allocation & Heap 



Memory allocation within a 
process 

n  Stack data structure 
¡  Function calls follow LIFO semantics 
¡  So we can use a stack data structure to 

represent the process’s stack – no 
fragmentation! 

n  Heap: malloc, free 
¡  This is a much harder problem 
¡  Need to deal with fragmentation 

Copyright ©: University of Illinois CS 241 Staff 2 

MP2! 



malloc Constraints 

n  Applications 
¡  Can issue arbitrary sequence of malloc 

and free requests 
¡  free request must be to a malloc’d  

block 

Copyright ©: University of Illinois CS 241 Staff 3 



malloc Constraints 

n  Allocators 
¡  Can’t control number or size of allocated blocks 
¡  Must respond immediately to malloc requests 

n  i.e., can’t reorder or buffer requests 
¡  Must allocate blocks from free memory 
¡  Must align blocks so they satisfy all requirements 

n  8 byte alignment for libc malloc on Linux boxes 
¡  Can manipulate and modify only free memory 
¡  Can’t move the allocated blocks once they are 

malloc’d 
n  i.e., compaction is not allowed (why not?) 

Copyright ©: University of Illinois CS 241 Staff 4 



Goal 1: Speed 

n  Allocate fast! 
¡  Minimize overhead for both allocation and 

deallocation 
n  Maximize throughput 

¡  Number of completed malloc or free requests 
per unit time 

¡  Example 
n  5,000 malloc calls and 5,000 free calls in 10 

seconds 

Copyright ©: University of Illinois CS 241 Staff 5 



Goal 1: Speed 

n  Allocate fast! 
¡  Minimize overhead for both allocation and 

deallocation 
n  Maximize throughput 

¡  Number of completed malloc or free requests 
per unit time 

¡  Example 
n  5,000 malloc calls and 5,000 free calls in 10 

seconds 
n  Throughput is 1,000 operations/second 

Copyright ©: University of Illinois CS 241 Staff 6 



Goal 1: Speed 

n  BUT 
¡  A fast allocator may not be efficient in 

terms of memory utilization 
¡  Faster allocators tend to be “sloppier” 

n  Example: don’t look through every free block 
to find the perfect fit 

Copyright ©: University of Illinois CS 241 Staff 7 



Goal 2: Memory Utilization 

n  Allocators usually 
waste some memory 
¡  Extra metadata or 

internal structures used 
by the allocator itself 
n  Example: keeping track 

of where free memory is 
located 

¡  Chunks of heap 
memory that are 
unallocated (fragments) 

Copyright ©: University of Illinois CS 241 Staff 8 



Goal 2: Memory Utilization 

n  Memory utilization = 
¡  The total amount of 

memory allocated to the 
application divided by 
the total heap size 

n  Ideal 
¡  utilization = 100% 

n  In practice 
¡  try to get close to 100% 

Copyright ©: University of Illinois CS 241 Staff 9 



Fragmentation 

n  Poor memory utilization caused by 
unallocatable memory 
¡  internal fragmentation 
¡  external fragmentation 

n  malloc fragmentation  
¡  When allocating memory to applications 

Copyright ©: University of Illinois CS 241 Staff 10 



Internal fragmentation 

n  Payload is smaller than block size 

n  Caused by  
¡  Overhead of maintaining heap data structures 
¡  Padding for alignment purposes 
¡  Explicit policy decisions  

(e.g., to return a big block to satisfy a small request) 

Copyright ©: University of Illinois CS 241 Staff 11 

Payload Internal  
fragmentation 

Block 

Internal  
fragmentation 



Experiment 

n  Does libc’s malloc have internal 
fragmentation?  How much? 

n  How would you test this? 

Copyright ©: University of Illinois CS 241 Staff 12 

Run Example 



fragtest 

#include <stdio.h> 
#include <stdlib.h> 
 
int main(int argc, char** argv) { 
 char* a = (char*) malloc(1); 
 char* b = (char*) malloc(1); 
 char* c = (char*) malloc(100); 
 char* d = (char*) malloc(100); 

 
 printf("a = %p\n b = %p\n c = %p\n d = %p\n", 
a,b,c,d); 

} 

Copyright ©: University of Illinois CS 241 Staff 13 

What output would 
you expect? 



fragtest - Output 

Copyright ©: University of Illinois CS 241 Staff 14 

a = malloc(1); b = malloc(1); 
c = malloc(100); d = malloc(100); 

 
a = 0xdb64010 
b = 0xdb64030 
c = 0xdb64050 
d = 0xdb640c0 

0x20 = 32 ≠ 1 
0x20 = 32 ≠ 1 

0x70 = 112 ≠ 100 



External Fragmentation 

n  There is enough aggregate heap memory, 
but no single free block is large enough 

Copyright ©: University of Illinois CS 241 Staff 15 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) 

Depends on the pattern of future requests 
Difficult to plan for 

Oops! (what would happen now?) 



Conflicting performance goals 

n  Throughput vs. Utilization  
¡  Difficult to achieve simultaneously 
¡  Faster allocators tend to be “sloppier” 

with memory usage 
¡  Space-efficient allocators may not be 

very fast 
n  Tracking fragments to avoid waste generally 

results in longer allocation times 

Copyright ©: University of Illinois CS 241 Staff 16 



Implementation issues you 
need to solve! 

n  How do I know how much memory to free 
just given a pointer? 

Copyright ©: University of Illinois CS 241 Staff 17 

Keep the length of 
the block in the 
header preceding 
the block 
 
Requires an extra 
word for every 
allocated block 



Keeping Track of Free Blocks 

n  One of the biggest jobs of an allocator is knowing 
where the free memory is 

n  The allocator's approach to this problem affects: 
¡  Throughput – time to complete a malloc() or free() 
¡  Space utilization – amount of extra metadata used to track 

location of free memory 

n  There are many approaches to free space 
management 

Copyright ©: University of Illinois CS 241 Staff 18 



Implicit Free Lists 

n  For each block we need 
both size and allocation 
status 
¡  Could store this information in 

two words: wasteful! 

n  Standard trick 
¡  If blocks are aligned, low-order 

address bits are always 0 
¡  Why store an always-0 bit? 

Use it as allocated/free flag! 
¡  When reading size word, must 

mask out this bit 

Copyright ©: University of Illinois CS 241 Staff 19 

Size 

1 word 

Payload 

a = 1: Allocated block   
a = 0: Free block 
Size: block size 
 
Payload: application data 
(allocated blocks only) 
 

a 

Optional 
padding 



Implicit Free Lists 

n  No explicit structure tracking location of free/
allocated blocks. 
¡  Rather, the size word (and allocated bit) in each 

block form an implicit “block list” 

Copyright ©: University of Illinois CS 241 Staff 20 



Implicit Free Lists: Free Blocks 

n  How do we find a free block in the heap? 
¡  Start scanning from the beginning of the heap. 
¡  Traverse each block until (a) we find a free block 

and (b) the block is large enough to handle the 
request. 

¡  This is called the first fit strategy 
n  Could also use best fit, etc 

Copyright ©: University of Illinois CS 241 Staff 21 



Implicit Free Lists: Allocating 
Blocks 

n  What if the allocated space is smaller than 
free space? 

n  Split free blocks 

Copyright ©: University of Illinois CS 241 Staff 22 

p 



Implicit Free Lists: Freeing a 
Block 

n  How do you free a block? 
n  Simplest implementation: 

¡  Only need to clear allocated flag 
n  Problem? 

Copyright ©: University of Illinois CS 241 Staff 23 



Implicit Free Lists: Freeing a 
Block 

n  Only need to clear allocated flag 
n  Problem? 

¡  False fragmentation 

Copyright ©: University of Illinois CS 241 Staff 24 

free(p) 

16 8 16 8 

p 

16 

16 16 8 16 8 

malloc(20) Oops! There’s enough free space 
but allocator won’t find it! 



Implicit Free Lists: Coalescing 
Blocks 

n  Join (coalesce) with next and previous 
block if they are free 
¡  Coalescing with next block 

Copyright ©: University of Illinois CS 241 Staff 25 

16 8 16 8 

free(p) p 

16 16 8 

16 

24 

But how do we coalesce 
with previous block? 



Implicit Free Lists: 
Bidirectional Coalescing 

n  Boundary tags [Knuth73] 
¡  Replicate size/allocated word at tail end of all blocks 
¡  Lets us traverse list backwards, but needs extra space 
¡  General technique: doubly linked list 

Copyright ©: University of Illinois CS 241 Staff 26 



Implicit Free Lists: 
Bidirectional Coalescing 

n  Boundary tags [Knuth73] 

Copyright ©: University of Illinois CS 241 Staff 27 

size 

1 word 

Format of 
allocated and 
free blocks 

payload and 
padding 

a = 1: Allocated block   
a = 0: Free block 
Size: block size 
 
payload: application data 
(allocated blocks only) 
 

a 

size a Boundary tag 
  (footer) 

16 16 16 16 24 16 24 16 

Header 



Implicit Free Lists: Summary 

n  Implementation 
¡  Very simple 

n  Allocation 
¡  linear-time worst case 

n  Free 
¡  Constant-time worst case—even with coalescing 

n  Memory usage 
¡  Will depend on placement policy 
¡  First fit, best fit,… 

Copyright ©: University of Illinois CS 241 Staff 28 



Implicit Free Lists: Summary 

n  Not used in practice for malloc/free 
¡  linear-time allocation is actually slow! 
¡  But used in some special-purpose applications 

n  However, concepts of splitting and boundary 
tag coalescing are general to all allocators 

Copyright ©: University of Illinois CS 241 Staff 29 



Alternative Approaches 

n  Explicit Free List 
n  Segregated Free Lists 

¡  Buddy allocators 

Copyright ©: University of Illinois CS 241 Staff 30 



Explicit Free List 

n  Linked list among free blocks 
n  Use data space for link pointers 

¡  Typically doubly linked 
¡  Still need boundary tags for coalescing 
¡  Links aren’t necessarily in address order! 

Copyright ©: University of Illinois CS 241 Staff 31 

16 16 16 16 24 24 16 16 16 16 

Forward link 

Back link 

A B 

C 



Explicit Free List: Inserting 
Free Blocks 

Copyright ©: University of Illinois CS 241 Staff 32 

n  Where should you put the newly freed 
block? 
¡  LIFO (last-in-first-out) policy 

n  Insert freed block at beginning of free list 
n  Pro 

¡  Simple, and constant-time 

n  Con 
¡  Studies suggest fragmentation is high 



Explicit Free List: Inserting 
Free Blocks 

Copyright ©: University of Illinois CS 241 Staff 33 

n  Where should you put the newly freed 
block? 
¡  Address-ordered policy 

n  Insert so list is always in address order 
¡  i.e. addr(pred) < addr(curr) < 

addr(succ) 

n  Con  
¡  Requires search (using boundary tags); slow! 

n  Pro 
¡  studies suggest fragmentation is better than LIFO 



Segregated Free Lists 

n  Each size class has its own collection 
of blocks 

Copyright ©: University of Illinois CS 241 Staff 34 

4-8 

12 

16 

20-32 

36-64 



Segregated Free Lists 

n  Each size class has its own collection 
of blocks 

Copyright ©: University of Illinois CS 241 Staff 35 

4-8 

12 

16 

20-32 

36-64 

n  Often separate size class for every 
small size (8, 12, 16, …) 

n  For larger, typically have size class 
for each power of 2 

What is the point of having 
separate lists? 



Buddy Allocators 

n  Special case of segregated free lists 
¡  Limit allocations to power-of-two sizes 
¡  Can only coalesce with "buddy“ 

n  Who is other half of next-higher power of two 

n  Clever use of low address bits to find 
buddies 

n  Problem 
¡  Large powers of two result in large internal 

fragmentation (e.g., what  if you want to allocate 
65537 bytes?) 

Copyright ©: University of Illinois CS 241 Staff 36 



Buddy System 

n  Approach 
¡  Minimum allocation size = smallest frame 
¡  Maintain freelist for each possible frame size  

n  Power of 2 frame sizes from min to max 
¡  Initially one block = entire buffer 
¡  If two neighboring frames (“buddies”) are free, combine 

them and add to next larger freelist 

Copyright ©: University of Illinois CS 241 Staff 37 



Buddy System Example 

Copyright ©: University of Illinois CS 241 Staff 38 

128 Free 



Buddy System Example 

Copyright ©: University of Illinois CS 241 Staff 39 

128 Free 

Request A: 16 

64 Free 64 Free 

32 Free 32 Free 

16 A 16 Free 32 Free 

64 Free 

64 Free 



Buddy System Example 

Copyright ©: University of Illinois CS 241 Staff 40 

128 Free 

Request B: 32 

16 A 16 Free 32 Free 64 Free 32 B 



Buddy System Example 

Copyright ©: University of Illinois CS 241 Staff 41 

128 Free 

Request C: 8 

16 A 16 Free 32 B 64 Free 

16 A 8 
C 32 B 64 Free 8 



Buddy System Example 

Copyright ©: University of Illinois CS 241 Staff 42 

Request A frees 

16 Free 8 
C 32 B 64 Free 8 



Buddy System Example 

n  Advantage 
¡  Minimizes external fragmentation 

n  Disadvantage 
¡  Internal fragmentation when not 2^n request 

Copyright ©: University of Illinois CS 241 Staff 43 

Request C frees 

16 Free 8 32 B 64 Free 8 

16 Free 32 B 64 Free 16 Free 

32 B 64 Free 32 Free 



So what should I do for MP2? 
n  Designs sketched here are all reasonable 
n  But, there are many other possible designs 
n  So, implement anything you want! 
n  Suggestion:  
è Before you start coding, REALLY spend 
time thinking about 1) your mem. manag. 
design; 2) its correctness; 3) the assumptions 
your code relies on; 4) performance trade-offs 

Copyright ©: University of Illinois CS 241 Staff 44 
Happy coding! 


