
Copyright ©: University of Illinois CS 241 Staff 1

System Calls and I/O

This lecture

n  Goals
¡  Get you familiar with necessary basic system & I/O calls to

do programming

n  Things covered in this lecture
¡  Basic file system calls
¡  Basic concepts about UNIX I/O

Copyright ©: University of Illinois CS 241 Staff 2

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 3

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 4

fnCall()

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 5

fnCall()

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.
-  OS has super-privileges; user does not
-  Must take measures to prevent abuse

System Calls

n  System Calls
¡  A request to the operating system to perform some activity

n  System calls are expensive
¡  The system needs to perform many things before executing a

system call
n  Store sys_call arguments in registers and switch to kernel mode
n  The OS code takes control of the CPU, privileges are updated, and

value of all registers is saved
n  The OS examines the call parameters and type of sys_call
n  The OS performs the requested function
n  The OS restores value of all registers
n  The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6

Copyright ©: Nahrstedt, Angrave, Abdelzaher

7

Steps for Making a System Call
(Example: read call)

Copyright ©: Nahrstedt, Angrave, Abdelzaher

8

l  A system call is implemented by a ``software interrupt'' that transfers
control to kernel code; in Linux/i386 this is ``interrupt 0x80''. The
specific system call being invoked is stored in the EAX register, and its
arguments are held in the other processor registers. In our example,
the number associated to read is __NR_read, defined in <asm/
unistd.h>.

l  After the switch to kernel mode, the processor must save all of its
registers and dispatch execution to the proper kernel function, after
checking whether EAX is out of range. The system call we are looking
at is implemented in the sys_read function. The read finally performs
the data transfer and all the previous steps are unwound up to the
calling user function.

Steps for Making a System Call
(Example: read call)

Copyright ©: Nahrstedt, Angrave, Abdelzaher

9

l  The cost of using a system call

l  Each arrow in the figure represents a jump in CPU instruction flow,
and each jump may require flushing the prefetch queue and
possibly a ``cache miss'' event.

l  Transitions between user and kernel space are especially important,
as they are the most expensive in processing time and prefetch
behavior.

Steps for Making a System Call
(Example: read call)

Examples of System Calls

n  Examples
¡  getuid() //get the user ID
¡  fork() //create a child process
¡  execve() //executing a program

n  Don’t mix system calls with standard library
calls
¡  Differences?
¡  Is printf() a system call?
¡  Is rand() a system call?

Copyright ©: University of Illinois CS 241 Staff 10

See man syscalls

How do we know what is and
what isn’t a system call?

n  2: System Call
n  3: Library Call

Copyright ©: University of Illinois CS 241 Staff 11

Library calls often
invoke system calls!

malloc(3) calls sbrk(2)

Major System Calls
Process Management
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution and return status

Copyright ©: University of Illinois CS 241 Staff 12

File Management
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

Today

File System and I/O Related
System Calls

n  A file system
¡  A means to organize, retrieve, and

update data in persistent storage
¡  A hierarchical arrangement of directories
¡  Bookkeeping information (file metadata)

n  File length, # bytes, modified timestamp, etc

n  Unix file system
¡  Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 13

System Calls for I/O

n  Open (and/or create) a file for reading, writing or both
int open (const char* name, int flags [,int mode]);

n  Read data from file referenced by fd into a buffer
size_t read (int fd, void* buf, size_t nbyte);

n  Write data from buffer to file referenced by fd
size_t write (int fd, void* buf, size_t nbyte);

n  Close a file
int close(int fd);

n  Get information about a file
 int stat(const char* name, struct stat* buf);

Copyright ©: University of Illinois CS 241 Staff 14

UNIX I/O

n  A UNIX file is a sequence of m bytes
¡  B0, B1, , Bk , , Bm-1

n  All I/O devices (e.g., network, disks,
terminals) are modeled as files
¡  A simple and elegant low-level interface
¡  For example:

n  /dev/sda Hard disk
n  /dev/tty terminal for the current process

Copyright ©: University of Illinois CS 241 Staff 15

How UNIX represents open
files

n  Case of two descriptors referencing two distinct open files

Copyright ©: University of Illinois CS 241 Staff

fd=0
fd=1
fd=2
fd=3
fd=4

File descriptor table
(one table per process)

stdin

stdout

stderr file offset
 file object's
usage cnt = 1
…

file type
file size
of hard links
…

List of open file obj.
(shared by all processes)

List of v-nodes
(shared by all processes)

File “foo.txt”

File “readme”

file offset
 file object's
usage cnt = 1
…

file type
file size
of hard links
…

File sharing in UNIX
n  Two file descriptors sharing the same file è call open(“foo.txt”,…) twice

Copyright ©: University of Illinois CS 241 Staff

The two open file objects
share the same file

but NOT the file offset

Copyright ©: University of Illinois CS 241 Staff

fd=0
fd=1
fd=2
fd=3
fd=4

File descriptor table
(one table per process)

stdin

stdout

stderr file offset
 file object's
usage cnt = 1
…

List of open file obj.
(shared by all processes)

File “foo.txt”

file offset
 file object's
usage cnt = 1
…

file type
file size
of hard links
…

List of v-nodes
(shared by all processes)

File “foo.txt”

I/O Redirection: Output (Input)
n  unix> ls > foo.txt è redirect output by calling sys_call: dup2(4,1)

Copyright ©: University of Illinois CS 241 Staff

System call
#include <unistd.h>
int dup2(int oldfd, int newfd);

Copyright ©: University of Illinois CS 241 Staff

fd=0
fd=1
fd=2
fd=3
fd=4

File descriptor table
(one table per process)

stdin

stdout

stderr

List of open file obj.
(shared by all processes)

file offset
 file object's
usage cnt = 2
…

file type
file size
of hard links
…

List of v-nodes
(shared by all processes)

File “foo.txt”

File offset

n  All open files have a "file offset" associated
with them to record the current position for
the next file operation

n  On open
¡  File offset points to the beginning of the file

n  After reading/writing m bytes
¡  File offset moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 19

File: Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open (const char* path, int flags [, int mode]);
n  Open (and/or create) a file for reading, writing or both
n  Returns:

¡  Return value ≥ 0 : Success - New file descriptor on success
¡  Return value = -1: Error, check value of errno

n  Parameters:
¡  path: Path to file you want to use

n  Absolute paths begin with “/”, relative paths do not

¡  flags: How you would like to use the file
n  O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: if this flag is specified in
conjunction with O_CREAT, and pathname already exists, then open() will fail.

Copyright ©: University of Illinois CS 241 Staff 20

File: Close

#include <fcntl.h>
int close(int fd);
n  Close a file

¡  Tells the operating system you are done with a file
descriptor

n  Return:
¡  0 on success
¡  -1 on error, sets errno

n  Parameters:
¡  fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 21

File: Read

#include <fcntl.h>
size_t read (int fd, void* buf, size_t cnt);
n  Read data from file referenced by fd into a buffer

¡  Read cnt bytes from the file specified by fd into the memory location
pointed to by buf

n  Return: How many bytes were actually read
¡  Number of bytes read on success
¡  0 on reaching end of file
¡  -1 on error, sets errno
¡  -1 on signal interrupt, sets errno to EINTR

n  Parameters:
¡  fd: file descriptor
¡  buf: buffer where to store data to
¡  cnt: length (in bytes) of data to be read

Copyright ©: University of Illinois CS 241 Staff 22

File: Read

size_t read (int fd, void* buf, size_t cnt);

n  Things to be careful about
¡  buf needs to point to a valid memory location with length

not smaller than the specified size
n  Otherwise, what could happen?

¡  fd should be a valid file descriptor returned from open()
to perform read operation
n  Otherwise, what could happen?

¡  cnt is the requested number of bytes read, while the
return value is the actual number of bytes read
n  How a “short count” could happen?

Copyright ©: University of Illinois CS 241 Staff 23

File: Write

#include <fcntl.h>
size_t write (int fd, void* buf, size_t cnt);
n  Write data from buffer to file referenced by fd

¡  Writes the bytes stored in buf to the file specified by fd
n  Return: How many bytes were actually written

¡  Number of bytes written on success
¡  -1 on error, sets errno
¡  -1 on signal interrupt, sets errno to EINTR

n  Parameters:
¡  fd: file descriptor
¡  buf: buffer
¡  cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 24

File: Write

size_t write (int fd, void* buf, size_t cnt);

n  Things to be careful about
¡  The file needs to be opened for write operations
¡  buf needs to be at least as long as specified by

cnt
n  If not, what will happen?

¡  cnt is the requested number of bytes to write,
while the return value is the actual number of
bytes written
n  How a “short count” could happen?

Copyright ©: University of Illinois CS 241 Staff 25

Standard Input, Standard
Output and Standard Error

n  Every process in Unix has three predefined file descriptors
¡  File descriptor 0 is standard input (STDIN)
¡  File descriptor 1 is standard output (STDOUT)
¡  File descriptor 2 is standard error (STDERR)

n  Read from standard input,
¡  read(0, ...);

n  Write to standard output
¡  write(1, ...);

n  Example of library functions from standard I/O Library (stdio.h)
¡  fprintf(FILE *stream, const char *format, …);
¡  scanf(const char *format, …);
¡  FILEs are a buffering wrapper around UNIX file descriptors

Copyright ©: University of Illinois CS 241 Staff 26

I/O Library Calls
n  Every system call has paired procedure calls from the

standard I/O library:

Unbuffered I/O
n  System Call

¡  open
¡  close
¡  read/write

¡  lseek

Buffered I/O (stream stderr is unbuffered)
n  Standard I/O call (stdio.h)

¡  fopen
¡  fclose
¡  getchar/putchar, getc/putc,

fgetc/fputc, fread/fwrite,
gets/puts, fgets/fputs,
scanf/printf, fscanf/fprintf

¡  fseek

Copyright ©: University of Illinois CS 241 Staff 27

Basic Unix Concepts

n  Error Model
¡  errno variable

n  Unix provides a globally accessible integer variable that contains an
error code number

¡  When a system call fails, it usually returns -1 and sets the variable errno
to a value describing what went wrong. (These values can be found in
<errno.h>.) Many library functions do likewise.

¡  The function perror() serves to translate this error code into human-
readable form.

¡  Note that errno is undefined after a successful library call: this call may
well change this variable, even though it succeeds, for example because
it internally used some other library function that failed. Thus, if a failing
call is not immediately followed by a call to perror(), the value of errno
should be saved.

Copyright ©: University of Illinois CS 241 Staff 28

Basic Unix Concepts

n  Error Model
¡  Return value

n  0 on success
n  -1 on failure for functions returning integer values
n  NULL on failure for functions returning pointers

¡  Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 29

Read (write) with short count

n  Sometimes read and write can transfer fewer bytes
than the application requested. It is not an error!
¡  Reaching EOF on reads
¡  Reading text lines from terminal
¡  …

n  A special case: read/write returns -1; errno == EINTR
¡  The system call was interrupted by a signal handler
¡  It is a recoverable error è just call read/write again!

Copyright ©: University of Illinois CS 241 Staff 30

An example: robust reading
with Rio package

Downloaded from http://csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
Online public document from “Computer Systems: A Programmer's Perspective”

31

ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{
 size_t nleft = n;
 ssize_t nread;
 char *bufp = usrbuf;

 while (nleft > 0) {

 if ((nread = read(fd, bufp, nleft)) < 0) {
 if (errno == EINTR) /* Interrupted by sig handler return */
 nread = 0; /* and call read() again */
 else
 return -1; /* errno set by read() */
 }
 else if (nread == 0)
 break; /* EOF */
 nleft -= nread;
 bufp += nread;

 }
 return (n - nleft); /* return >= 0 */
}

