Operating Systems
Orientation

Copyright ©: University of Illinois CS 241 Staff

Objectives

Explain the main purpose of operating systems
Explain the POSIX standard (UNIX specification)

Explain fundamental machine concepts
o Instruction processing

o Memory hierarchy

o Interrupts

o 10

Copyright ©: University of Illinois CS 241 Staff

[OS Structure]

Application Software

POSIX
[The UNIX Interface Standard

|

Application Software

Copyright ©: University of Illinois CS 241 Staff

POSIX Standard Interface

Unix

[What Is an Operating System??

It is an extended machine
o Hides the messy details that must be performed

o Presents user with a virtualized and simplified
abstraction of the machine, easier to use

It is a resource manager
o Each program gets time with the resource
o Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff

A Peek into Unix

Application

Libraries User space/level

Kernel space/level

Portable OS Layer

 User/kernel modes are
supported by hardware

Machine-dependent layer

Some systems do not have
clear user-kernel boundary

Copyright ©: University of Illinois CS 241 Staff 6]

Application

Applications
(Firefox, Emacs, grep)

Libraries

Written by programmer
Compiled by
programmer

Use function calls

Portable OS Layer

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 7]

Unix: Libraries

Application

Libraries (e.g., stdio.h) =_

Portable OS Layer

Provided pre-compiled
Defined in headers

Input to linker (compiler)

Invoked like functions
May be “resolved”

when program is loaded

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

Machine-dependent layer

T
T~

System calls (read,
open..)
All “high-level” code

Copyright ©: University of Illinois CS 241 Staff

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

/

Machine-dependent layer

Bootstrap
System initialization

Interrupt and exception

I/O device driver
Memory management
Kernel/user mode
switching

Processor management

Copyright ©: University of Illinois CS 241 Staff

N

Computer Hardware Review

_ Hard
Monitor Keyboard disk drive

b

=Y b 4l
e\ (o 00000

Computer
operation and
data processing

000

N
. Hard
USB
CPU Memory || contomer | | couonor disk
controller controller

BUS

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 11]

Computer Hardware Review

Communication
between CPU,
Memory and I/O

Hard
disk drive

b

Keyboard
Stores data o
and
programs
\~
Video Keyboard
CPU Memory controller controller
BUS

Use

controller

goooo

Hard
disk
controller

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff

o

[CPU & Registers

Fetch instruction from code memory
Fetch operands from data memory
Perform operation (and store result)
Check interrupt line

Go to next instruction

CPU must maintain certain state information
stored in internal registers

‘Simplified CPU’

(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 13]

CPU Registers Example

Hold instruction operands

Point to start of

o Code segment (executable instructions)

o Data segment (static/global variables)

o Stack segment (execution stack data)

CPU must also maintain certain state:

o Current instruction to execute (program counter)
o Stack pointer

Copyright ©: University of Illinois CS 241 Staff 14]

Sample Layout for program
Image In main memory

Command-line arguments
and environment variables

High address “— argc, argv, environment

«— Activation record for function calls
1 (return address, parameters,
saved registers, automatic variables

stack

T

heap

o _ “— Allocations from malloc family
Uninitialized static data

Initialized static data Processes have three
segments: text, data, stack

Program text (code

Low address e

Copyright ©: University of Illinois CS 241 Staff 15]

Memory Hierarchy

Leverage locality of reference

Typical access time

Decreasing
cost per bit
Increasing
capacity
Increasing
access time
Decreasing
frequency
of access

~0.5 nsec

~5 nsec
~20 nsec
~10 msec

seconds

Registers

Cache

Main memory

Magnetic disk

Magnetic tape

Copyright ©: University of Illinois CS 241 Staff

Typical capacity

<1 KB
~4 MB
~4 GB
~1TB

several TB

s i

/O Device Access

System Calls

o Application makes a system call

o OS translates to specific driver

o Driver starts I/0O

o Polls device for completion or blocks user process until device
controller generates interrupt

Interrupts

o Application requests an |/O operation

o OS activates I/O device and asks for an interrupt upon completion

o OS blocks application (i.e., blocking 1/0 system call)

o When data available, I/O device controller generates interrupt

Copyright ©: University of Illinois CS 241 Staff

a1

Operating System Concepts

Shared resources

O

O

®)

| have B GB of memory, but need N*B GB

| have N processes trying to access the network,
disk, etc. at the same time

How would you control access to resources?

Challenges

O

O

Who gets to use the resources?

How do you control fair use of the resources
over time?

How to avoid deadlock?

Copyright ©: University of Illinois CS 241 Staff 18]

Operating System Concepts

Process
o An executable instance of a program
o Only one process can use a (single-core) CPU at a time

How is a program different from a process?
o aprogram is a passive collection of instructions;

o a process is the actual execution of those instructions; each process
has a state to keep track of its execution

o Several processes may be associated with the same program and
share the same read-only code segment; for example, opening up
several instances of the same program (like terminal) often means
more than one process is being executed.

Copyright ©: University of Illinois CS 241 Staff 19]

Operating System Concepts

A process tree

O

A created two child processes, B
and C

B created three child processes, D,
E,and F

Copyright ©: University of Illinois CS 241 Staff

Operating System Concepts

How would you switch CPU execution from one
process to another?

Solution: Context Switching

o Store/restore state on CPU, so execution can be resumed
from same point later in time

o Triggers: multitasking, interrupt handling, user/kernel
mode switching

o Involves: Saving/loading registers and other state into a
“process control block” (PCB)

o PCBs stored in kernel memory

Copyright ©: University of Illinois CS 241 Staff 21]

Operating System Concepts

Context Switching
o What are the costs involved?
ltem Time Scaled Time in Human Terms
(2 billion times slower)
Processor cycle 0.5ns (@ 2 GHz) 1s
Cache access ~5ns 10s
Memory access ~20 ns 40 s
Context switch ~5,000 ns (5 usec) 167 min
overhead (Linux)
System quanta ~2,500,000 ns (2.5 ms) | 57 days
Disk access ~10,000,000 ns (10 ms) | 230 days

Copyright ©: University of Illinois CS 241 Staff 22]

Operating System Concepts

Inter-process Communication

o Now process A needs to exchange information
with process B

o How would you enable communication between

rocesses?
P Shared Memory

Message

. — . @

Copyright ©: University of Illinois CS 241 Staff

