
Copyright ©: University of Illinois CS 241 Staff 1

Operating Systems
Orientation

Objectives

n  Explain the main purpose of operating systems

n  Explain the POSIX standard (UNIX specification)

n  Explain fundamental machine concepts
¡  Instruction processing
¡  Memory hierarchy
¡  Interrupts
¡  I/O

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Copyright ©: University of Illinois CS 241 Staff 3 3

Firefox Second Life Yahoo
Chat GMail

Application Software

Network Hardware

Read/Write Standard
Output

Device
Control

File
System Communication

Operating System

Standard Operating System Interface

Machine Independent

Machine Specific

POSIX
The UNIX Interface Standard

Copyright ©: University of Illinois CS 241 Staff 4

Firefox Second Life Yahoo
Chat GMail

Application Software

Read/Write Standard
Output

Device
Control

File
System Communication

Unix

POSIX Standard Interface

What is an Operating System?

n  It is an extended machine
¡  Hides the messy details that must be performed
¡  Presents user with a virtualized and simplified

abstraction of the machine, easier to use

n  It is a resource manager
¡  Each program gets time with the resource
¡  Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

Machine-dependent layer

A Peek into Unix

Copyright ©: University of Illinois CS 241 Staff 6

Application

Portable OS Layer

Libraries User space/level

Kernel space/level
•  User/kernel modes are
 supported by hardware

• Some systems do not have
 clear user-kernel boundary

Machine-dependent layer

Application

Copyright ©: University of Illinois CS 241 Staff 7

Applications
(Firefox, Emacs, grep)

Portable OS Layer

Libraries

•  Written by programmer
•  Compiled by

programmer
•  Use function calls

Machine-dependent layer

Unix: Libraries

Copyright ©: University of Illinois CS 241 Staff 8

Application

Portable OS Layer

Libraries (e.g., stdio.h)

•  Provided pre-compiled
•  Defined in headers
•  Input to linker (compiler)
•  Invoked like functions
•  May be “resolved”

when program is loaded

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 9

Application

Portable OS Layer

Libraries

•  System calls (read,
open..)

•  All “high-level” code

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 10

Application

Portable OS Layer

Libraries •  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Kernel/user mode

switching
•  Processor management

Computer Hardware Review

n  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 11

Computer
operation and
data processing

Computer Hardware Review

n  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 12

Stores data
and
programs

Communication
between CPU,
Memory and I/O

CPU & Registers
n  Fetch instruction from code memory
n  Fetch operands from data memory
n  Perform operation (and store result)
n  Check interrupt line
n  Go to next instruction

è  CPU must maintain certain state information
stored in internal registers

è  ‘Simplified CPU’
(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 13

CPU Registers Example

n  Hold instruction operands
n  Point to start of

¡  Code segment (executable instructions)
¡  Data segment (static/global variables)
¡  Stack segment (execution stack data)

n  CPU must also maintain certain state:
¡  Current instruction to execute (program counter)
¡  Stack pointer

Copyright ©: University of Illinois CS 241 Staff 14

Command-line arguments
and environment variables

Uninitialized static data

Initialized static data

Program text (code
segment)

Sample Layout for program
image in main memory

Copyright ©: University of Illinois CS 241 Staff 15

Processes have three
segments: text, data, stack

stack

heap
Allocations from malloc family

Activation record for function calls
(return address, parameters,
saved registers, automatic variables

argc, argv, environment High address

Low address

Memory Hierarchy

n  Leverage locality of reference

Copyright ©: University of Illinois CS 241 Staff 16

<1 KB

~4 MB

~4 GB

~1TB

several TB

1.  Decreasing
cost per bit

2.  Increasing
capacity

3.  Increasing
access time

4.  Decreasing
frequency
of access

~0.5 nsec

~5 nsec

~20 nsec

~10 msec

seconds

I/O Device Access

n  System Calls
¡  Application makes a system call
¡  OS translates to specific driver
¡  Driver starts I/O
¡  Polls device for completion or blocks user process until device

controller generates interrupt

n  Interrupts
¡  Application requests an I/O operation
¡  OS activates I/O device and asks for an interrupt upon completion
¡  OS blocks application (i.e., blocking I/O system call)
¡  When data available, I/O device controller generates interrupt

Copyright ©: University of Illinois CS 241 Staff 17

Operating System Concepts

n  Shared resources
¡  I have B GB of memory, but need N*B GB
¡  I have N processes trying to access the network,

disk, etc. at the same time
¡  How would you control access to resources?

n  Challenges
¡  Who gets to use the resources?
¡  How do you control fair use of the resources

over time?
¡  How to avoid deadlock?

Copyright ©: University of Illinois CS 241 Staff 18

Operating System Concepts
n  Process

¡  An executable instance of a program
¡  Only one process can use a (single-core) CPU at a time

n  How is a program different from a process?
¡  a program is a passive collection of instructions;
¡  a process is the actual execution of those instructions; each process

has a state to keep track of its execution
¡  Several processes may be associated with the same program and

share the same read-only code segment; for example, opening up
several instances of the same program (like terminal) often means
more than one process is being executed.

Copyright ©: University of Illinois CS 241 Staff 19

Operating System Concepts
n  A process tree

¡  A created two child processes, B
and C

¡  B created three child processes, D,
E, and F

Copyright ©: University of Illinois CS 241 Staff 20

A

B C

E F D

Operating System Concepts

n  How would you switch CPU execution from one
process to another?

n  Solution: Context Switching
¡  Store/restore state on CPU, so execution can be resumed

from same point later in time
¡  Triggers: multitasking, interrupt handling, user/kernel

mode switching
¡  Involves: Saving/loading registers and other state into a
“process control block” (PCB)

¡  PCBs stored in kernel memory

Copyright ©: University of Illinois CS 241 Staff 21

Operating System Concepts

n  Context Switching
¡  What are the costs involved?

Copyright ©: University of Illinois CS 241 Staff 22

Item Time Scaled Time in Human Terms
(2 billion times slower)

Processor cycle 0.5 ns (@ 2 GHz) 1 s
Cache access ~5 ns 10 s
Memory access ~20 ns 40 s
Context switch
overhead (Linux)

~5,000 ns (5 usec) 167 min

System quanta ~2,500,000 ns (2.5 ms) 57 days
Disk access ~10,000,000 ns (10 ms) 230 days

Operating System Concepts

n  Inter-process Communication
¡  Now process A needs to exchange information

with process B
¡  How would you enable communication between

processes?

Copyright ©: University of Illinois CS 241 Staff 23

A B

Message
passing

A B

Shared Memory

