
Copyright ©: University of Illinois CS 241 Staff 1

C Survival Guide

How do I write good C
programs?

n  Fluency in C syntax
n  Stack (static) vs. Heap (dynamic) memory

allocation
n  Key skill: design

¡  Think how to structure (functions, global/local
variables, etc.) your program before you start
writing your first line of code

n  Key skill: debugging
¡  Learn to use a debugger. Don’t only rely on

printfs!
n  Key skill: defensive programming

¡  Avoid assumptions about what is probably true

Copyright ©: University of Illinois CS 241 Staff 2

Why C instead of Java?
n  C helps you get “under the hood”

¡  One step up from assembly language
¡  Many existing servers/systems written in C

n  C helps you learn how to write large-scale programs
¡  C is lower-level

n  C provides more opportunities to create abstractions
¡  C has some flaws

n  C’s flaws motivate discussions of software engineering
principles

Copyright ©: University of Illinois CS 241 Staff 3

C design Goals

n  C design goals
¡  Support structured programming
¡  Support development of the Unix OS and Unix tools

n  As Unix became popular, so did C
n  Implications for C

¡  Good for systems-level programming
¡  Low-level
¡  Efficiency over portability
¡  Efficiency over security

n  Anything you can do in Java you can do in C – it
just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff 4

C vs. C++

n  C++ is “C with Classes”
n  C is only a subset of C++

¡  C++ has objects, a bigger standard library (e.g.,
STL), parameterized types, etc.

¡  C++ is a little bit more strongly typed
n  C is fortunately a subset of C++

¡  Can be simpler, more direct
n  C is a subset of C++

¡  All syntax you use in this class is valid for C++
¡  Not all C++ syntax you’ve used, however, is

valid for C
5 Copyright ©: University of Illinois CS 241 Staff

Compiler

n  gcc
¡  Preprocessor
¡  Compiler
¡  Linker
¡  See manual “man” for options: man gcc

n  "Ansi-C" standards C89 versus C99
¡  C99: Mix variable declarations and code (for int i=…)
¡  C++ inline comments //a comment

n  make – a utility to build executables

6 Copyright ©: University of Illinois CS 241 Staff

Programming in C

n  C = Variables + Instructions

7 Copyright ©: University of Illinois CS 241 Staff

Programming in C

n  C = Variables + Instructions

…

printf/scanf

assignment

if

switch …

for

while

int

char

float

string

pointer

array

Copyright ©: University of Illinois CS 241 Staff 8

What we’ll show you

n  You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
n  Key concepts for this lecture:

¡  Pointers
¡  Memory allocation
¡  Arrays
¡  Strings

Theme:
how memory
really works

9 Copyright ©: University of Illinois CS 241 Staff

Pointers

Copyright ©: University of Illinois CS 241 Staff 10

Variables

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

11 Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

12 Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

Copyright ©: University of Illinois CS 241 Staff 13

The “*” Operator
Reads “Variable pointed to by”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

Copyright ©: University of Illinois CS 241 Staff 14

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

GOOD or BAD?

Copyright ©: University of Illinois CS 241 Staff 15

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

#@*%! p
??

Pointing somewhere
random

BAD!

Copyright ©: University of Illinois CS 241 Staff 16

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

#@*%! p

write to
address: #@*%!

10

Copyright ©: University of Illinois CS 241 Staff 17

How to initialize pointers

n  Set equal to address of some piece of
memory

n  …or NULL for “pointing nowhere”

n  OK, where do we get memory?

Copyright ©: University of Illinois CS 241 Staff 18

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 19

Memory allocation

n  Two ways to dynamically allocate
memory

n  Stack
¡  Named variables in functions

n  Allocated for you when you call a function
n  Deallocated for you when function returns

n  Heap
¡  Memory on demand

n  You are responsible for all allocation and
deallocation

Copyright ©: University of Illinois CS 241 Staff 20

Allocating and deallocating
heap memory

n  Dynamically allocating memory
¡  Programmer explicitly requests space in memory
¡  Space is allocated dynamically on the heap
¡  using “malloc” in C

n  Dynamically deallocating memory
¡  Must reclaim or recycle memory that is never used again
¡  To avoid (eventually) running out of memory
¡  using “free” in C

Copyright ©: University of Illinois CS 241 Staff 21

Manual Deallocation
n  Programmer deallocates memory (C and C++)

¡  Manually determines which objects can’t be accessed
¡  And then explicitly returns those resources to the heap
¡  e.g., using “free” in C or “delete” in C++

n  Advantages
¡  Lower overhead
¡  No unexpected “pauses”
¡  More efficient use of memory

n  Disadvantages
¡  More complex for the programmer
¡  Subtle memory-related bugs

22 Copyright ©: University of Illinois CS 241 Staff

Manual deallocation can lead
to bugs

n  Dangling pointers
¡  Programmer frees memory … but still has a pointer to it
¡  Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 23

int main(void) {
 char *p;
 p = malloc(10);
 …
 free(p);
 …
 printf(“%c\n”,*p);

}

Manual deallocation can lead
to bugs

n  Dangling pointers
¡  Programmer frees memory … but still has a pointer to it
¡  Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 24

int main(void) {
 char *p;
 p = malloc(10);
 …
 free(p);
 …
 printf(“%c\n”,*p);

}

May print
nonsense
character

Manual deallocation can lead
to bugs

n  Memory leak
¡  Programmer neglects to free unused region of memory
¡  So, the space can never be allocated again
¡  Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 25

void f(void) {
 char *s;
 s = malloc(50);

}
int main(void) {

 while (1) f();
}

Manual deallocation can lead
to bugs

n  Memory leak
¡  Programmer neglects to free unused region of memory
¡  So, the space can never be allocated again
¡  Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 26

void f(void) {
 char *s;
 s = malloc(50);

}
int main(void) {

 while (1) f();
}

Eventually,
malloc()
returns
NULL

Manual deallocation can lead
to bugs

n  Double free
¡  Programmer mistakenly frees a region more than once
¡  Corruption of the heap or destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 27

int main(void) {
 char *p, *q;
 p = malloc(10);
 …
 free(p)
 q = malloc(10);
 free(p)

}

Heap memory allocation

n  C++:
¡  new and delete allocate memory for a

whole object

n  C:
¡  malloc and free deal with

unstructured blocks of bytes
 void* malloc(size_t size);
 void free(void* ptr);

28 Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the
right type

How many bytes
do you want?

Copyright ©: University of Illinois CS 241 Staff 29

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

n  Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

30 Copyright ©: University of Illinois CS 241 Staff

Arrays

n  Contiguous block of memory
¡  Fits one or more elements of some type

n  Two ways to allocate
¡  named variable
int x[10];
¡  dynamic
int* x = (int*)

malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 31

Is there a
difference?

Arrays

n  Contiguous block of memory
¡  Fits one or more elements of some type

n  Two ways to allocate
¡  named variable
int x[10];
¡  dynamic
int* x = (int*)

malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 32

One is on the
stack, one is on

the heap

Is there a
difference?

Arrays

int p[5];

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff 33

Example

int y[4];
y[1]=6;

y[2]=2;
6
2

y[0]

y[1]

y[2]

y[3]

y

Copyright ©: University of Illinois CS 241 Staff 34

Array Name as Pointer

n  What’s the difference between the
examples?

n  Example 1:

int z[8];
int *q;
q=z;

n  Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 35

Array Name as Pointer

n  What’s the difference between the
examples?

n  Example 1:

int z[8];
int *q;
q=z;

n  Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 36

NOTHING!!

z (the array name) is a pointer
to the beginning of the array,
which is &z[0]

Questions

n  What’s the difference between
int* q;

int q[5];

n  What’s wrong with
int ptr[2];

ptr[1] = 1;

ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 37

Strings

Copyright ©: University of Illinois CS 241 Staff 38

Strings
(Null-terminated Arrays of Char)

n  Strings are arrays that contain the
string characters followed by a “Null”
character ‘\0’ to indicate end of string.
¡  Do not forget to leave room for the null

character
n  Example

¡  char s[5];
s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 39

Conventions

n  Strings
¡  “string”

¡  “c”

n  Characters
¡  ‘c’

¡  ‘X’

Copyright ©: University of Illinois CS 241 Staff 40

String Operations

n  strcpy
n  strlen

n  strcat

n  strcmp

Copyright ©: University of Illinois CS 241 Staff 41

strcpy, strlen

n  What’s wrong with

char str[5];

strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 42

43

Constants:
binary/decimal/hexadecimal

n  What is the difference between these
assignments?

¡  i = 42;
¡  i = 0x2a;
¡  i = 0b101010;

44

Constants:
binary/decimal/hexadecimal

n  What is the difference between these
assignments?

¡  i = 42;
¡  i = 0x2a;
¡  i = 0b101010;

¡  These assignments are identical!

45

n  You should be able to convert between
binary and hexadecimal quickly.

Constants:
binary/decimal/hexadecimal

