

1

Filesystems

Based on slides by Matt Welsh, Harvard

Announcements
  MP8 due tomorrow night
  Finals approaching, know your times and conflicts

  Ours: Friday May 11, 1:30 – 4:30 pm
  Review material similar to midterm released by Friday

  Topic outline
  Practice final exam

  Review sessions
  Vote on Piazza for times that work for you
  Do this by midnight Tuesday; results announced Wed.

  Honors section demos
  Vote on Piazza for times that work for you
  Do this by Wednesday

2

Filesystems
  A filesystem provides a high-level application access to disk

  As well as CD, DVD, tape, floppy, etc...
  Masks the details of low-level sector-based I/O operations
  Provides structured access to data (files and directories)
  Caches recently-accessed data in memory

  Hierarchical filesystems: Most common type
  Organized as a tree of directories and files

  Byte-oriented vs. record-oriented files
  UNIX, Windows, etc. all provide byte-oriented file access

  May read and write files a byte at a time
  Many older OS's provided only record-oriented files

  File composed of a set of records; may only read and write a record at a time

  Versioning filesystems
  Keep track of older versions of files
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

3

Filesystem Operations
  Filesystems provide a standard interface to files and directories:

  Create a file or directory
  Delete a file or directory
  Open a file or directory – allows subsequent access
  Read, write, append to file contents
  Add or remove directory entries
  Close a file or directory – terminates access

  What other features do filesystems provide?
  Accounting and quotas – prevent your classmates from hogging the disks
  Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots
  Indexing and search capabilities
  File versioning
  Encryption
  Automatic compression of infrequently-used files

  Should this functionality be part of the filesystem or built on top?
  Classic OS community debate: Where is the best place to put functionality?

4

Basic Filesystem Structures
  Every file and directory is represented by an inode

  Stands for “index node”

  Contains two kinds of information:
  1) Metadata describing the file's owner, access rights, etc.
  2) Location of the file's blocks on disk

5

Directories
  A directory is a special kind of file that contains a list of (filename,

inode number) pairs

  These are the contents of the directory “file data” itself – NOT the
directory's inode!

  Filenames (in UNIX) are not stored in the inode at all!
  Two open questions:

  How do we find the root directory (“ / “ on UNIX systems)?
  How do we get from an inode number to the location of the inode on disk?

6

Pathname resolution
  To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

7

Locating inodes on disk
  All right, so directories tell us the inode number of a file.

  How the heck do we find the inode itself on disk?
  Basic idea: Top part of filesystem contains all of the inodes!

  inode number is just the “index” of the inode
  Easy to compute the block address of a given inode:

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

  This implies that a filesystem has a fixed number of potential inodes
  This number is generally set when the filesystem is created

  The superblock stores important metadata on filesystem layout, list of free
blocks, etc.

8

Stupid directory tricks
  Directories map filenames to inode numbers. What does this imply?
  We can create multiple pointers to the same inode in different

directories
  Or even the same directory with different filenames

  In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)
bash$ ln /home/foo /tmp/foo
bash$ ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk
  Not a copy! You will always see identical data no matter which filename you

use to read or write the file.
  Note: This is not the same as a “symbolic link”, which only links one

filename to another.
9

How should we organize blocks on a disk?
  Very simple policy: A file consists of linked blocks

  inode points to the first block of the file
  Each block points to the next block in the file (just a linked list on disk)

  What are the advantages and disadvantages??

  Indexed files
  inode contains a list of block numbers containing the file
  Array is allocated when the file is created

  What are the advantages and disadvantages??

10

Multilevel indexed files
  inode contains a list of 10-15 direct block pointers

  First few blocks of file can be referred to by the inode itself

  inode also contains a pointer to a single indirect, double
indirect, and triple indirect blocks
  Allows file to grow to be incredibly large!!!

11

File system caching
  Most filesystems cache significant amounts of disk in

memory
  e.g., Linux tries to use all “free” physical memory as a giant cache
  Avoids huge overhead for going to disk for every I/O

12

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

13

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

14

Caching issues (2)
  Reliability issues

  What happens when you write to the cache but the system crashes?
  What if you update some of the blocks on disk but not others?

  Example: Update the inode on disk but not the data blocks?
  Write-through cache: All writes immediately sent to disk
  Write-back cache: Cache writes stored in memory until evicted (then

written to disk)
  Which is better for performance? For reliability?

15

Caching issues (2)
  “Syncing” a filesystem writes back any dirty cache

blocks to disk
  UNIX “sync” command achieves this.
  Can also use fsync() system call to sync any blocks for a given file.

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to
the disk!

  This is also complicated by memory caching on the disk itself.

  Crash recovery
  If system crashes before sync occurs, “fsck” checks the filesystem

for errors
  Example: an inode pointing to a block that is marked as free in the

free block list
  Another example: An inode with no directory entry pointing to it

  These usually get linked into a “lost+found” directory
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

16

Caching and fsync() example
  Running the copy example from last time,

  How fast is it the first time, vs. the second time
you copy the same file?

  What happens if we fsync() after each
iteration?

17

Caching issues (3)
  Read ahead

  Recall: Seek time dominates overhead of disk I/O
  So, would ideally like to read multiple blocks into memory when

you have a cache miss
  Amortize the cost of the seek for multiple reads

  Useful if file data is laid out in contiguous blocks on disk
  Especially if the application is performing sequential access to the file

18

Making filesystems resilient:
RAID

Copyright ©: University of Illinois CS
241 Staff

19

RAID Motivation
  Speed of disks not matching other components

  Moore’s law: CPU speed doubles every 18 months
  SRAM speeds increasing by 40-100% a year
  In contrast, disk seek time only improving 7% a year

  Although greater density leads to improved transfer times once seek is done

  Emergence of PCs starting to drive down costs of disks
  (This is 1988 after all)
  PC-class disks were smaller, cheaper, and only marginally slower

20

RAID Motivation
  Basic idea: Build I/O systems as arrays of cheap

disks
  Allow data to be striped across multiple disks
  Means you can read/write multiple disks in parallel –

greatly improve performance
  Problem: disks are extremely unreliable
  Mean Time to Failure (MTTF)

  MTTF (disk array) = MTTF (single disk) / # disks
  Adding more disks means that failures happen more

frequently..
  An array of 100 disks with an MTTF of 30,000 hours =

just under 2 weeks for the array’s MTTF!

21

Increasing reliability
  Idea: Replicate data across multiple disks

  When a disk fails, lost information can be regenerated from the
redundant data

  Simplest form: Mirroring (also called “RAID 1”)
  All data is mirrored across two disks

  Advantages:
  Reads are faster, since both disks can be read in parallel
  Higher reliability (of course)

  Disadvantages:
  Writes are slightly slower, since OS must wait for both disks to do

write
  Doubles the cost of the storage system!

22

RAID 3
  Rather than mirroring, use parity codes

  Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an
even number of “1” bits in the set {b1, b2, ..., bN, P}

  Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P)
to recover it.

  Where to store the parity codes?
  Add an extra “check disk” that stores parity bits for the data stored on the

rest of the N disks
  Advantages:

  If a single disk fails, can easily recompute the lost data from the parity
code

  Can use one parity disk for several data disks (reduces cost)

  Disadvantages:
  Each write to a block must update the corresponding parity block as well

23

RAID 3 example

24

RAID 3 example

25

RAID 3 example

26

RAID 3 example

27

RAID 3 example

  1. Read back data from other disks
  2. Recalculate lost data from parity code
  3. Rebuild data on lost disk

28

RAID 3 issues
  Terminology

  MTTF = mean time to failure
  MTTR = mean time to repair

  What is the MTTF of RAID?
  Both RAID 1 and RAID 3 tolerate the failure of a single disk
  As long as a second disk does not die while we are repairing the first

failure, we are in good shape!

  So, what is the probability of a second disk failure?
  P(2nd failure) ≈ MTTR / (MTTF of one disk / # disks -1)

  Assumes independent, exponential failure rates; see Patterson RAID paper for derivation

  10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
  P(2nd failure) ≈ 1 day / (1000 / 9) = 0.009

  What is the performance of RAID 3?
  Check disk must be updated each time there is a write
  Problem: The check disk is then a performance bottleneck

  Only a single read/write can be done at once on the whole system!
29

RAID 5
  Another approach: Interleaved check blocks (“RAID 5”)

  Rotate the assignment of data blocks and check blocks across
disks

  Avoids the bottleneck of a single disk for storing check data
  Allows multiple reads/writes to occur in parallel (since different

disks affected)

30

Reliable distributed storage
  Today, giant data stores distributed across 100s of

thousands of disks across the world
  e.g., your mail on gmail

  “You know you have a large storage system when you
get paged at 1 AM because you only have a few
petabytes of storage left.”
  – a “note from the trenches” at Google

31

Reliable distributed storage
  Issues

  Failure is the common case
  Google reports 2-10% of disks fail per year
  Now multiply that by 60,000+ disks in a single warehouse...

  Must survive failure of not just a disk, but a rack of servers or a
whole data center

  Solutions
  Simple redundancy (2 or 3 copies of each file)

  e.g., Google GFS (2001)
  More efficient redundancy (analogous to RAID 3++)

  e.g., Google Colossus filesystem (~2010): customizable
replication including Reed-Solomon codes with 1.5x
redundancy

  More interesting tidbits: http://goo.gl/LwFIy

32

Today only!

33

Randy Katz
Distinguished Professor,
University of California at
Berkeley

“Mesos: A Platform for
Fine-Grained Resource
Sharing in the Data Center”

4:00 p.m. Today
2405 Siebel Center

Copyright ©: University of Illinois CS
241 Staff

34

Bonus: Atomic write failures in
RAID (not on exam)

Atomic Write Failure
  Many applications perform “update in

place”
  They change a file on disk by overwriting it with

a new version
  What happens with RAID?

35

Atomic Write Failure
  But is the complete write to all disks really

atomic?
  Generally, no!

36

Atomic Write Failure
  But is the complete write to all disks really atomic?

  Generally, no!

  What does this mean?
  Data can be left in an inconsistent state across the different disks!
  Really hard to recover from this.

  Problem: Most applications assume the storage system
has atomic write semantics.

  Possible fixes?
  Use a journaling filesystem-like approach: Record changes to data

objects transactionally.
  Requires extensive changes to filesystem sitting on top of the RAID.

  Battery-backed write cache:
  RAID controller remembers all writes in a battery-backed cache
  When recovery occurs, flush all writes out to the physical disks
  Doesn't solve the problem in general but gives you some insurance.

37

Copyright ©: University of Illinois CS
241 Staff

38

Bonus: Modern Filesystem
techniques (not on exam)

Modern Filesystem Tricks
  Extents
  Pre-allocation
  Delayed allocation (Block remapping)
  Colocating inodes and directories
  Soft metadata updates
  Journaling
  These tricks are used by many modern

filesystems
  E.g., ext3 and ext4

39

Extent-based transfers
  One idea: a gap between sectors on a track

  Try to take advantage of rotational latency for
performing next read or write operation

  Problem: Hurts performance for multi-sector I/
O!

  Cannot achieve the full transfer rate of the disk
for large, contiguous reads or writes.

  Possible fix: Just get rid of the gap between
sectors
  Problem: “Dropped rotation” between

consecutive reads or writes: have to wait for
next sector to come around under the heads.

40

  Hybrid approach - “extents” [McVoy, USENIX'91]
  Group blocks into “extents” or clusters of contiguous blocks
  Try to do all I/O on extents rather than individual blocks
  To avoid wasting I/O bandwidth, only do this when FS detects

sequential access
  Kind of like just increasing the block size...

Block remapping
  Problem: Block numbers are allocated when they

are first written
  FS maintains a free list of blocks and simply picks the

first block off the list
  No guarantee that these blocks will be contiguous for a large

write!

  A single file may end up with blocks scattered across
the disk

  Why can't we maintain the free list in some sorted
order?
  Problem: Interleaved writes to multiple files may end up

causing each file to be discontiguous.

41

Block remapping
  Idea: Delay determination of block address until cache is flushed

  Hope that multiple block writes will accumulate in the cache
  Can remap the block addresses for each file's writes to a contiguous set

  This is kind of a hack, introduced “underneath” the FFS block allocation layer.
  Meant fewer changes to the rest of the FFS code.
  Sometimes building real systems means making these kinds of tradeoffs!

42

Colocating inodes and directories
  Problem: Reading small files is slow. Why?

  What happens when you try to read all files in a directory (e.g., “ls
-l” or “grep foo *”) ?

  Must first read directory.
  Then read inode for each file.
  Then read data pointed to by inode.

  Solution: Embed the inodes in the directory itself!
  Recall: Directory just a set of <name, inode #> values
  Why not stuff inode contents in the directory file itself?

  Problem #2: Must still seek to read contents of each file in
the directory.
  Solution: Pack all files in a directory in a contiguous set of blocks.

43

Synchronous metadata updates
  Problem: Some updates to metadata

require synchronous writes
  Means the data has to “hit the disk” before

anything else can be done.
  Example #1: Creating a file

  Must write the new file's inode to disk before
the corresponding directory entry.
  Why???

  Example #2: Deleting a file
  Must clear out the directory entry before

marking the inode as “free”
  Why??? 44

Synchronous metadata updates
  Problem: Some updates to metadata require synchronous writes

  Means the data has to “hit the disk” before anything else can be done.
  Example #1: Creating a file

  Must write the new file's inode to disk before the corresponding directory
entry.
  Why???

  Example #2: Deleting a file
  Must clear out the directory entry before marking the inode as “free”

  Why???

45

Synchronous metadata updates
  Say that ...

  1) Both inodes are in the
same disk block.

  2) Both the file create
and file delete have
happened in the cache,
but neither has hit the
disk yet.

  Given this, what order
are we allowed to write
the disk blocks out?
  We have a cyclic

dependency here!!!
Arggghhhh

46

Solution: Soft Updates
  Idea: Keep track of

dependencies on a
finer granularity
  Rather than at a

block level, do this at
a “data structure
level”

  Example: Track
dependencies on
individual inodes or
directory entries.

47

Soft Updates - Example
  How to break the cyclic

dependency?
  “Roll back” one of the

changes before writing the
data out to disk!

  When flushing inode block
(Block 2) to disk...
  Undo the file delete operation

(as if it never happened!)
  Write out the inode block

(Block 2) – still contains B!
  Then write out the directory

block (Block 1) – still contains
entry for B!

  Then redo the file delete
operation ... can now
proceed. 48

Log-structured Fileystems (LFS)
  Around '91, two trends in disk technology were emerging:

  Disk bandwidth was increasing rapidly (over 40% a year)
  Seek latency not improving much at all
  Machines had increasingly large main memories

  Large buffer caches absorb a large fraction of read I/Os

  Can use for writes as well!
  Coalesce several small writes into one larger write

  Some lingering problems with earlier filesystems...
  Writing to file metadata (inodes) was required to be synchronous

  Couldn't buffer metadata writes in memory

  Lots of small writes to file metadata means lots of seeks!

  LFS takes advantage of both to increase FS performance
  Started as a grad-school research project at Berkeley
  Mendel Rosenblum and John Ousterhout

49

LFS: The basic idea
  Treat the entire disk as one big append-only log for writes!

  Don't try to lay out blocks on disk in some predetermined order
  Whenever a file write occurs, append it to the end of the log
  Whenever file metadata changes, append it to the end of the log

  Collect pending writes in memory and stream out in one
big write
  Maximizes disk bandwidth
  No “extra” seeks required (only those to move the end of the log)

  When do writes to the actual disk happen?
  When a user calls sync() -- synchronize data on disk for whole

filesystem
  When a user calls fsync() -- synchronize data on disk for one file
  When OS needs to reclaim dirty buffer cache pages

  Note that this can often be avoided, eg., by preferring clean pages

  Sounds simple ...
  But lots of hairy details to deal with!

50

LFS Example

  Just append every new write that happens
to the end of the log
  Writing a block in the middle of the file just

appends that block to the end of the log

51

LFS and inodes
  How do you locate file data?

  Sequential scan of the log is probably a bad
idea ...

  Solution: Write the inodes to the tail of the
log! (just like regular data)

52

LFS and inodes
  How do you locate file data?

  Sequential scan of the log is probably a bad
idea ...

  Solution: Use FFS-style inodes!

53

inode map (this is getting fun)
  Well, now, how do you find the inodes??

  Could also be anywhere in the log!

  Solution: inode maps
  Maps “file number” to the location of its inode in the log
  Note that inode map is also written to the log!!!!
  Cache inode maps in memory for performance

54

Reading from LFS
  But wait ... now file data is scattered all over

the disk!
  Seems to obviate all of the benefits of grouping

data on common cylinders
  Basic assumption: Buffer cache will handle

most read traffic
  Or at least, reads will happen to data roughly in

the order in which it was written
  Take advantage of huge system memories to

cache the heck out of the FS!

55

Log cleaner
  With LFS, eventually the disk will fill up!

  Need some way to reclaim “dead space”

  What constitutes “dead space?”
  Deleted files
  File blocks that have been “overwritten”

  Solution: Periodic “log cleaning”
  Scan the log and look for deleted or overwritten

blocks
  Effectively, clear out stale log entries

  Copy live data to the end of the log
  The rest of the log (at the beginning) can now be

reused!
56

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

57

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

58

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

59

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

60

Properties of LFS
  Advantages

  High write throughput
  Few in-place writes

  Some kinds of storage media have limited write/erase cycles per
location (e.g., flash memory, CD-RW)

  LFS prolongs life of media through write-leveling

  Disadvantages
  Increases file fragmentation, can harm performance on systems

with high seek times
  Less throughputs on flash memory, where write fragmentation has

much less of an impact on write throughput

  “Lies, damn lies, and benchmarks”
  It is very difficult to come up with definitive benchmarks proving

that one system is better than another
  Can always find a scenario where one system design outperforms

another
61

Filesystem corruption
  What happens when you are making changes to a

filesystem and the system crashes?
  Example: Modifying block 5 of a large directory, adding lots of new

file entries
  System crashes while the block is being written
  The new files are “lost!”

  System runs fsck program on reboot
  Scans through the entire filesystem and locates corrupted inodes

and directories
  Can typically find the bad directory, but may not be able to repair it!
  The directory could have been left in any state during the write

  fsck can take a very long time on large filesystems
  And, no guarantees that it fixes the problems anyway

62

Journaling filesystems
  Ensure that changes to the filesystem are

made atomically
  That is, a group of changes are made all

together, or not at all
  Example: creating a new file

  Need to write both the inode for the new file
and the directory entry “together”

  Otherwise, if a crash happens between the two
writes, either..
  1) Directory points to a file that does not exist
  2) Or, file is on disk but not included in any directory

63

Journaling filesystems
  Goal: Make updates to filesystems appear to be atomic

  The directory either looks exactly as it did before the file was
created

  Or the directory looks exactly as it did after the file was created
  Cannot leave an FS entity (data block, inode, directory, etc.) in an

intermediate state!

  Idea: Maintain a log of all changes to the filesystem
  Log contains information on any operations performed to the

filesystem state
  e.g., “Directory 2841 had inodes 404, 407, and 408 added to it”

  To make a filesystem change:
  1. Write an intent-to-commit record to the log
  2. Write the appropriate changes to the log

  Do not modify the filesystem data directly!!!

  3. Write a commit record to the log

  This is very similar to the notion of database transactions 64

Journaling FS Recovery
  What happens when the system crashes?

  Filesystem data has not actually been modified, just the log!
  So, the FS itself reflects only what happened before the crash

  Periodically synchronize the log with the filesystem data
  Called a checkpoint
  Ensures that the FS data reflects all of the changes in the log

  No need to scan the entire filesystem after a crash...
  Only need to look at the log entries since the last checkpoint!

  For each log entry, see if the commit record is there
  If not, consider the changes incomplete, and don't try to make

them

65

Journaling FS Example

66

Journaling FS Example

67

Journaling FS Example

  Filesystem reflects changes up to last checkpoint
  Fsck scans changelog from last checkpoint forward
  Doesn't find a commit record ... changes are simply

ignored 68

Copyright ©: University of Illinois CS
241 Staff

69

Bonus: NFS

More recent filesystems

  How can we share filesystems over a
network?
  NFS, SAN, NAS, Hadoop

  How can we make a filesystem resilient to
failures?
  RAID (covered in earlier slides)

70

Networked File System (NFS)
  NFS allows a system to access files over a

network
  One of many distributed file systems
  Extremely successful and widely used

  You use NFS on all your shared files in the lab
machines

71

Networked File System (NFS)
  Development of LANs made it really attractive to provide shared file

systems to all machines on a network
  Login to any machine and see the same set of files
  Install software on a single server that all machines can run
  Let users collaborate on shared set of files (before CVS)

  Why might this be hard to do?
  Clients and servers might be running different OS
  Clients and servers might be using different CPU architecture with

differing byte ordering (endianess)
  Client or server might crash independently of each other

  Must be easy to recover from crashes

  Potentially very large number of client machines on a network
  Different users might be trying to modify a shared file at the same time
  Transparency: Allow user programs to access remote files just like local

files
  No special libraries, recompilation, etc.

72

NFS Overview
  NFS was developed by Sun Microsystems in the mid-80s

  Networked machines at the time were predominantly UNIX-based workstations
  Various vendors: Sun, DEC, IBM, etc.
  Different CPU architectures and OS implementations

  But, all used UNIX filesystem structure and semantics

  NFS is based on Remote Procedure Call (RPC)
  Allows a client machine to invoke a function on a server machine, over a network
  Client sends a message with the function arguments
  Server replies with a message with the return value.

  External Data Representation (XDR) to represent data types
  Canonical network representation for ints, longs, byte arrays, etc.
  Clients and servers must translate parameters and return values of RPC calls into

XDR before shipping on the network
  Otherwise, a little-endian machine and a big-endian machine would disagree on

what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int”

73

NFS Design

74

Stateless Protocol
  The NFS protocol is stateless

  The server maintains no information about individual clients!
  This means that NFS does not support any notion of “opening” or
“closing” files

  Each client simply issues read and write requests specifying the file, offset
in the file, and the requested size

  Advantages:
  Server doesn't need to keep track of open/close status of files
  Server doesn't need to keep track of “file offset” for each client's open

files
  Clients do this themselves

  Server doesn't have to do anything to recover from a crash!
  Clients simply retry NFS operations until the server comes back up

  Disadvantages:
  Server doesn't keep track of concurrent access to same file
  Multiple clients might be modifying a file at the same time

  NFS does not provide any consistency guarantees!!!

  However, there is a separate locking protocol – discussed later 75

NFS Protocol Overview
  mount() returns filehandle for root of filesystem

  Actually a separate protocol from NFS...

  lookup(dir-handle, filename) returns filehandle, attribs
  Returns unique file handle for a given file
  File handle used in subsequent read/write/etc. calls

  create(dir-handle, filename, attributes) returns filehandle
  remove(dir-handle, filename) returns status
  getattr(filehandle) returns attribs

  Returns attributes of the file, e.g., permissions, owner, group ID,
size, access time, last-modified time

  setattr(filehandle, attribs) returns attribs
  read(filehandle, offset, size) returns attribs, data
  write(filehandle, offset, count, data) returns attribs

76

NFS Caching

  NFS clients are responsible for caching recently-accessed data
  Remember: the server is stateless!

  The NFS protocol does not require that clients cache data ...
  But, it provides support allowing a range of client-side caching techniques

  This is accomplished through the getattr() call
  Returns size, permissions, and last-modified time of file
  This can tell a client whether a file has changed since it last read it
  Read/write calls also return attributes so client can tell if object was

modified since the last getattr() call
  How often should the client use getattr()?

  Whenever the file is accessed?
  Could lead to a lot of getattr calls!

  Only if the file has not been accessed for some time?
  e.g., If the file has not been accessed in 30 sec?

  Different OSs implement this differently!

77

NFS Locking
  NFS does not prevent multiple clients from

modifying a file simultaneously
  Clearly, this can be a Bad Thing for some

applications...
  Solution: Network Lock Manager (NLM)

protocol
  Works alongside NFS to provide file locking
  NFS itself does not know anything about locks

  Clients have to use NLM “voluntarily” to avoid
stomping on each other

  NLM has to be stateful
  Why? 78

NLM Protocol
  NLM server has to keep track of locks held by clients
  If the NLM server crashes...

  All locks are released!
  BUT ... clients can reestablish locks during a “grace period” after the

server recovers
  No new locks are granted during the grace period
  Server has to remember which locks were previously held by clients

  If an NLM client crashes...
  The server is notified when the client recovers and releases all of its locks

  What happens if a client crashes and does not come back up for a while?

  Servers and clients must be notified when they crash and
recover
  This is done with the simple “Network Status Monitor” (NSM) protocol
  Essentially, send a notification to the other host when you reboot

79

NLM Example

80

Client A

Client B

Server

“lock file foo, offset 0 len 512”

“lock granted”

“lock file foo, offset 0 len 512”

“denied!”

Client A,
foo[0…512]

NLM Example

81

Client A

Client B

Server

Client A,
foo[0…512]

NLM Example

82

Client A

Client B

Server Restart notification

Client A,
foo[0…512]

NLM Example

83

Client A

Client B

Server

“relock file foo, offset 0 len 512”

“lock granted”

Client A,
foo[0…512]

check

