[ Filesystems



[ Announcements

MP8 due tomorrow night

Finals approaching, know your times and conflicts

o QOurs: Friday May 11, 1:30 — 4:30 pm

Review material similar to midterm released by Friday
o Topic outline

o Practice final exam

Review sessions
o Vote on Piazza for times that work for you
o Do this by midnight Tuesday; results announced Wed.

Honors section demos
o Vote on Piazza for times that work for you
o Do this by Wednesday



[ Filesystems

A filesystem provides a high-level application access to disk
As well as CD, DVD, tape, floppy, etc...

o Masks the details of low-level sector-based I/O operations
o  Provides structured access to data (files and directories)
o Caches recently-accessed data in memory

Hierarchical filesystems: Most common type
o Organized as a tree of directories and files
Byte-oriented vs. record-oriented files
o  UNIX, Windows, etc. all provide byte-oriented file access
May read and write files a byte at a time
o Many older OS's provided only record-oriented files
File composed of a set of records; may only read and write a record at a time
Versioning filesystems
o  Keep track of older versions of files
o e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

|



[ Filesystem Operations

Filesystems provide a standard interface to files and directories:
Create a file or directory

Delete a file or directory

Open a file or directory — allows subsequent access

Read, write, append to file contents

Add or remove directory entries

Close a file or directory — terminates access

What other features do filesystems provide?
o Accounting and quotas — prevent your classmates from hogging the disks

o Backup — some filesystems have a “SHOME/.backup” containing
automatic snapshots

Indexing and search capabilities

File versioning

Encryption

Automatic compression of infrequently-used files

Should this functionality be part of the filesystem or built on top?
o  Classic OS community debate: Where is the best place to put functionality? ][
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[ Basic Filesystem Structures

Every file and directory is represented by an inode
Stands for “index node”

Contains two kinds of information:

1) Metadata describing the file's owner, access rights, etc.
2) Location of the file's blocks on disk

O

O
O

size in bytes
owner of file
group ID of file
permission bits
creation time
modified time
access time

disk blocks with file data

metadata|
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[ Directories

A directory is a special kind of file that contains a list of (filename,

inode number) pairs

@)

@)

Two open questions:

@)

®)

metadata

Filename

aliases
appletalk.cfg
authorization
bashrc
crontab
passwd

Inode number

45686
3206854
631239
41131
27961
2859

1;77

These are the contents of the directory “file data” itself — NOT the

directory's inode!

Filenames (in UNIX) are not stored in the inode at all!

How do we find the root directory (“ / “ on UNIX systems)?

How do we get from an inode number to the location of the inode on disk?

6



[ Pathname resolution

= To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

inode

inode
2859

2801

Filename inode number
pin 2755
dev 3
etc 2801 - -
home 2126948 ~ o
usr 10699 (= N
V4
_ -
. " Filéname inode number
inode aliases 45686

appletalk.cfg 3206854

authorization 631239

bashrc 41131
crontab 27961
passwd 2859 - - =

— — -
— —
— — — — — —
— — — — — — —

root:*:10:10:8System Administrators/var/root:/bin/sh
daemonsi*il:liSystem Servicess/var/roots:s/usr/bin/false

uucps*:14:4:Unix to Unix Copy Protocol:/var/spool/uucps/usr/sbin/uucico

1p:1*326126:Printing Services:/var/spool/cupss:/usr/bin/false

_—




[ Locating inodes on disk

= All right, so directories tell us the inode number of a file.
o How the heck do we find the inode itself on disk?
= Basic idea: Top part of filesystem contains all of the inodes!

superblock inodes File and directory data blocks

o inode number is just the “index” of the inode

Easy to compute the block address of a given inode:
= block addr(inode _num) = block offset of first inode + (inode_num *
inode_size)
o  This implies that a filesystem has a fixed number of potential inodes
= This number is generally set when the filesystem is created
o  The superblock stores important metadata on filesystem layout, list of free
blocks, etc. ; ]



[ Stupid directory tricks

Directories map filenames to inode numbers. What does this imply?

We can create multiple pointers to the same inode in different
directories

o  Or even the same directory with different flenames
In UNIX this is called a “hard link” and can be done using “In

144

bash$ 1s -i /home/foo

287663 /home/foo (This is the inode number of “foo”)
bash$ 1ln /home/foo /tmp/foo

bash$ 1s -i /home/foo /tmp/foo

287663 /home/foo

287663 /tmp/foo

o “/homef/foo” and “/tmp/foo” now refer to the same file on disk

Not a copy! You will always see identical data no matter which filename you
use to read or write the file.

o  Note: This is not the same as a “symbolic link”, which only links one
filename to another.



How should we organize blocks on a disk?

Very simple policy: A file consists of linked blocks
o inode points to the first block of the file

o Each block points to the next block in the file (just a linked list on disk)
What are the advantages and disadvantages??

inode —, /' \ /' \

Indexed files
o inode contains a list of block numbers containing the file

o Array is allocated when the file is created
What are the advantages and disadvantages??

Inode

¥




[ Multilevel indexed files

inode contains a list of 10-15 direct block pointers
o First few blocks of file can be referred to by the inode itself
Inode also contains a pointer to a single indirect, double

indirect, and triple indirect blocks
o Allows file to grow to be incredibly large!!!

direct blocks

iInode

single-indirect blocks

e

\\: o,
double-indirect blocks _\»

ol




[ File system caching

= Most filesystems cache significant amounts of disk in
memory
o e.g., Linux tries to use all “free” physical memory as a giant cache
o Avoids huge overhead for going to disk for every I/O

User % ¢
Kernel

. Provides illusion of
Filesystem files and and

directories

Maintains memory cache
Buffer cache of recently accessed disk
blocks

) Performs low-level
Low-level disk I/O access to raw disk blocks




[ Caching issues

= Where should the cache go?

O

O

Below the filesystem layer: Cache individual disk blocks
Above the filesystem layer: Cache entire files and directories

Which is better??

..

Filesystem

Buffer cache

Low-level disk 1/0

Provides illusion of
files and and
directories

Maintains memory cache
of recently accessed disk
blocks

Performs low-level
access to raw disk blocks



[ Caching issues

= Where should the cache go?
Below the filesystem layer: Cache individual disk blocks
Above the filesystem layer: Cache entire files and directories

O

O

Which is better??

Kernel

Filesystem cache

Filesystem

+

Low-level disk I/O

Maintains memory cache
of recently accessed files

Provides illusion of
files and and
directories

Performs low-level
access to raw disk blocks



[ Caching issues (2)

Reliability issues
o  What happens when you write to the cache but the system crashes?
o  What if you update some of the blocks on disk but not others?
= Example: Update the inode on disk but not the data blocks?
o  Write-through cache: All writes immediately sent to disk

Write-back cache: Cache writes stored in memory until evicted (then
written to disk)

= Which is better for performance? For reliability?

_ Provides illusion of
Filesystem files and and

directories

Maintains memory cache
Buffer cache of recently accessed disk
blocks

: Performs low-level
Low-level disk I/O access to raw disk blocks ]




[ Caching issues (2)

“Syncing” a filesystem writes back any dirty cache
blocks to disk

o UNIX “sync” command achieves this.
o Can also use fsync() system call to sync any blocks for a given file.

Warning — not all UNIX systems guarantee that after sync returns that the data has really been written to
the disk!
This is also complicated by memory caching on the disk itself.

Crash recovery

o If system crashes before sync occurs, “fsck” checks the filesystem
for errors

o Example: an inode pointing to a block that is marked as free in the
free block list

o Another example: An inode with no directory entry pointing to it

These usually get linked into a “lost+found” directory
inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might
belong!

s i



[ Caching and fsync() example

Running the copy example from last time,

o How fast is it the first time, vs. the second time
you copy the same file?

o What happens if we £sync () after each
iteration?



[ Caching issues (3)

So, would ideally like to read multiple blocks into memory when

Read ahead
o Recall: Seek time dominates overhead of disk 1/O
O
you have a cache miss
= Amortize the cost of the seek for multiple reads
O

Useful if file data is laid out in contiguous blocks on disk
= Especially if the application is performing sequential access to the file

Filesystem

Buffer cache

Low-level disk 1/0O

Provides illusion of
files and and
directories

Maintains memory cache

of recently accessed disk
blocks

Performs low-level
access to raw disk blocks

I



Making filesystems resilient:
RAID

gqpyfigr_]_t ©: University of Illinois CS
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[ RAID Motivation

= Speed of disks not matching other components
o Moore’s law: CPU speed doubles every 18 months
o  SRAM speeds increasing by 40-100% a year

o In contrast, disk seek time only improving 7% a year
= Although greater density leads to improved transfer times once seek is done

=  Emergence of PCs starting to drive down costs of disks

o (This is 1988 after all)
o PC-class disks were smaller, cheaper, and only marginally slower

Price per MB (UK £)

Random-access

Factor of 2 in

12 months

memory
10 & Mt\f\/\u;\ Factor of 2 in
= Bk 18 months
1 4 Mh"h}a I Y ]
1 Hard disks /?\\-\_ f\~ ;:JL
0.01 3 RSN =
0.001 3 SN ﬂ
0.0001 +— . ' , . . —
1990 1992 1994 1996 1998 2000 2002 2004

Year



[ RAID Motivation ]

= Basic idea: Build I/O systems as arrays of cheap
disks
o Allow data to be striped across multiple disks
o Means you can read/write multiple disks in parallel —
greatly improve performance
= Problem: disks are extremely unreliable

= Mean Time to Failure (MTTF)
o MTTF (disk array) = MTTF (single disk) / # disks

o Adding more disks means that failures happen more
frequently..

o An array of 100 disks with an MTTF of 30,000 hours =
just under 2 weeks for the array’s MTTF!

x|



[ Increasing reliability

|dea: Replicate data across multiple disks

o When a disk fails, lost information can be regenerated from the
redundant data

Simplest form: Mirroring (also called “RAID 17)

o All data is mirrored across two disks

Advantages:
o Reads are faster, since both disks can be read in parallel
o Higher reliability (of course)

Disadvantages:

o  Writes are slightly slower, since OS must wait for both disks to do
write

o Doubles the cost of the storage system!



[RND3

Rather than mirroring, use parity codes

o Given N bits {b,, b,, ..., by}, the parity bit P is the bit {0,1} that yields an
even number of “17 bits in the set {b,, b,, ..., by, P}

o ldea: If any bitin {b,, b,, ..., by} is lost, can use the remaining bits (plus P)
to recover it.
Where to store the parity codes?

o Add an extra “check disk” that stores parity bits for the data stored on the
rest of the N disks

Advantages:
o If a single disk fails, can easily recompute the lost data from the parity
code

o Can use one parity disk for several data disks (reduces cost)

Disadvantages:
o  Each write to a block must update the corresponding parity block as well

s |



[ RAID 3 example

1

0

0

1

1

1

1

0

0]0]1]0

DisK 1 Disk 2\ Disk 4 Check disk
—

1

—
~

0

m
\———""'/

0

—
~—

1

/—‘——_\
e ————

\_—__/

0

—
—



[ RAID 3 example




[ RAID 3 example




Disk 1 Disk 2 Disk 3 Disk 4 Check disk




[ RAID 3 example

Disk 4

1|10

Check disk

. Read back data from other disks
. Recalculate lost data from parity code
. Rebuild data on lost disk



[ RAID 3 issues

Terminology
o MTTF = mean time to failure
o MTTR = mean time to repair

What is the MTTF of RAID?

o Both RAID 1 and RAID 3 tolerate the failure of a single disk

o Aslong as a second disk does not die while we are repairing the first
failure, we are in good shape!

So, what is the probability of a second disk failure?

P(2nd failure) = MTTR / (MTTF of one disk / # disks -1)

Assumes independent, exponential failure rates; see Patterson RAID paper for derivation

o 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
P(2nd failure) = 1 day / ( 1000 /9 ) = 0.009

What is the performance of RAID 3?

o  Check disk must be updated each time there is a write
o Problem: The check disk is then a performance bottleneck

Only a single read/write can be done at once on the whole system! ]
29



[RND5

= Another approach: Interleaved check blocks (“RAID 57)

O

Rotate the assignment of data blocks and check blocks across
disks

Avoids the bottleneck of a single disk for storing check data

Allows multiple reads/writes to occur in parallel (since different
disks affected)

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
—_ — —
S ~ R

0 0 0l|/ 1
T — —

Check blocks interleaved across disks

]



[ Reliable distributed storage

Today, giant data stores distributed across 100s of
thousands of disks across the world

o e.dg., your mail on gmail

“You know you have a large storage system when you
get paged at 1 AM because you only have a few
petabytes of storage left.”

o —a "note from the trenches” at Google



[ Reliable distributed storage

Issues

o Failure is the common case
Google reports 2-10% of disks fail per year

Now multiply that by 60,000+ disks in a single warehouse...

o Must survive failure of not just a disk, but a rack of servers or a
whole data center
Solutions
o Simple redundancy (2 or 3 copies of each file)
e.g., Google GFS (2001)
o More efficient redundancy (analogous to RAID 3++)

e.g., Google Colossus filesystem (~2010): customizable
replication including Reed-Solomon codes with 1.5x
redundancy

More interesting tidbits: http://goo.gl/LwFly



[ Today only!

Randy Katz

Distinguished Professor,
University of California at

Berkeley

ORBAN

IS PRIME

MAR 30 2009

DONALD B. GILLIES MEMORIAL LECTURE

“Mesos: A Platform for
Fine-Grained Resource
Sharing in the Data Center”

4:00 p.m. Today
2405 Siebel Center



Bonus: Atomic write failures in
RAID (not on exam)

gqpyfigr_]_t ©: University of Illinois CS
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[ Atomic Write Failure ]

Many applications perform “update in
place”

o They change a file on disk by overwriting it with
a new version

\What hannens with RAIN?
1[0]0]1

Disk 1 Disk 2\ Disk 4 Check disk
—_—

e—— ]
0 1 1 0

— P ] b 0 ] Ve
S e L < S < S < —




[ Atomic Write Failure

But is the complete write to all disks really
atomic?
o Generally, no!

]



[ Atomic Write Failure

But is the complete write to all disks really atomic?
o Generally, no!

What does this mean?

o Data can be left in an inconsistent state across the different disks!
o Really hard to recover from this.

Problem: Most applications assume the storage system
has atomic write semantics.

Possible fixes?

o Use a journaling filesystem-like approach: Record changes to data
objects transactionally.
Requires extensive changes to filesystem sitting on top of the RAID.

o Battery-backed write cache:
RAID controller remembers all writes in a battery-backed cache
When recovery occurs, flush all writes out to the physical disks
Doesn't solve the problem in general but gives you some insurance.

1



Bonus: Modern Filesystem
technigues (not on exam)

gqpyfigr_]_t ©: University of Illinois CS
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[ Modern Filesystem Tricks W

Extents

Pre-allocation

Delayed allocation (Block remapping)
Colocating inodes and directories
Soft metadata updates

Journaling

These tricks are used by many modern
filesystems
o E.qg., ext3 and ext4



[ Extent-based transfers

One idea: a gap between sectors on a track

o Try to take advantage of rotational latency for
performing next read or write operation

o  Problem: Hurts performance for multi-sector |/
O!

o  Cannot achieve the full transfer rate of the disk
for large, contiguous reads or writes.

Possible fix: Just get rid of the gap between

sectors

o  Problem: “Dropped rotation” between

consecutive reads or writes: have to wait for
next sector to come around under the heads.

Hybrid approach - “extents” [McVoy, USENIX'91]
o  Group blocks into “extents” or clusters of contiguous blocks
o Try to do all I/O on extents rather than individual blocks

o  To avoid wasting I/O bandwidth, only do this when FS detects
sequential access

= Kind of like just increasing the block size... 40 E[



[ Block remapping ]

Problem: Block numbers are allocated when they
are first written

o FS maintains a free list of blocks and simply picks the
first block off the list

No guarantee that these blocks will be contiguous for a large
write!

o A single file may end up with blocks scattered across
the disk

Why can't we maintain the free list in some sorted

order?

o Problem: Interleaved writes to multiple files may end up
causing each file to be discontiguous.

o



[ Block remapping

|dea: Delay determination of block address until cache is flushed
o Hope that multiple block writes will accumulate in the cache

o Can
|
[ |

Block Ids
allocated at
write time

Block layout
on disk

remap the block addresses for each file's writes to a contiguous set
This is kind of a hack, introduced “underneath” the FFS block allocation layer.
Meant fewer changes to the rest of the FFS code.

Sometimes building real systems means making these kinds of tradeoffs!

remap blocks




[ Colocating inodes and directories

Problem: Reading small files is slow. Why?

o What happens when you try to read all files in a directory (e.g., “Is
-I” or “grep foo *7) ?

o Must first read directory.

o Then read inode for each file.

o Then read data pointed to by inode.

Solution: Embed the inodes in the directory itself!
o Recall: Directory just a set of <name, inode #> values
o Why not stuff inode contents in the directory file itself?

Problem #2: Must still seek to read contents of each file in
the directory.
o Solution: Pack all files in a directory in a contiguous set of blocks.

o



[ Synchronous metadata updates W

Problem: Some updates to metadata

require synchronous writes

o Means the data has to “hit the disk” before
anything else can be done.

Example #1: Creating a file

o Must write the new file's inode to disk before
the corresponding directory entry.
Why?7?7?

Example #2: Deleting a file

o Must clear out the directory entry before

marking the inode as “free” ‘
Why?7?? |



[ Synchronous metadata updates

Problem: Some updates to metadata require synchronous writes
o Means the data has to “hit the disk” before anything else can be done.
Example #1: Creating a file
o  Must write the new file's inode to disk before the corresponding directory
entry.
Why??2?
Example #2: Deleting a file

o  Must clear out the directory entry before marking the inode as “free”
Why??2?

Directory

A
X

B
\ File BX




[ Synchronous metadata updates ]

Say that ...

o 1) Both inodes are in the
same disk block.

o 2) Both the file create
and file delete have
happened in the cache,
but neither has hit the
disk yet.

o Given this, what order
are we allowed to write

the disk blocks out?

We have a cyclic
dependency herel!!
Arggghhhh ....

Depegdency

— -~

” \
Block 1 Block 2

inode
Directorx /

\

' ~Dependency _ 4

o [



[ Solution: Soft Updates

|dea: Keep track of

dependencies on a

. _ Block 1 Block 2
finer granularity - -
Dependency ] i
o Rather than at a 7 > e
bleck level, do this at ' Directory /
a “data structure 1 Al
level” <
N \ File BX
o Example: Track ~ |- P inode
dependencies on Dependency

Individual inodes or

directory entries.



[ Soft Updates - Example

= How to break the cyclic
dependency?

“Roll back” one of the
changes before writing the
data out to disk!

= When flushing inode block
(Block 2) to disk...

O

O

O

O

Undo the file delete operation
(as if it never happened!)

Write out the inode block
(Block 2) — still contains B!

Then write out the directory
block (Block 1) — still contains
entry for B!

Then redo the file delete
operation ... can now
proceed.

Block 1

Dependency
7

/

/
\ Directory

B X
A
AN

T~

Dependency|

N A["’/

—

—_—

Block 2

=




[ Log-structured Fileystems (LFS)

Around '91, two trends in disk technology were emerging:
o Disk bandwidth was increasing rapidly (over 40% a year)
o Seek latency not improving much at all

o Machines had increasingly large main memories
Large buffer caches absorb a large fraction of read 1/0Os

o Can use for writes as well!

Coalesce several small writes into one larger write

Some lingering problems with earlier filesystems...

o  Writing to file metadata (inodes) was required to be synchronous
Couldn't buffer metadata writes in memory

o Lots of small writes to file metadata means lots of seeks!

LFS takes advantage of both to increase FS performance

o Started as a grad-school research project at Berkeley
o Mendel Rosenblum and John Ousterhout

o



[ LFS: The basic idea ]

Treat the entire disk as one big append-only log for writes!
o Don't try to lay out blocks on disk in some predetermined order

o Whenever a file write occurs, append it to the end of the log

o Whenever file metadata changes, append it to the end of the log

Collect pending writes in memory and stream out in one
big write

o Maximizes disk bandwidth

o No “extra” seeks required (only those to move the end of the log)

When do writes to the actual disk happen?

o When a user calls sync() -- synchronize data on disk for whole
filesystem

o When a user calls fsync() -- synchronize data on disk for one file
o When OS needs to reclaim dirty buffer cache pages

Note that this can often be avoided, eg., by preferring clean pages

Sounds simple ... . N
o  But lots of hairv details to deal with!



[ LFS Example ]

Log—»

= Just append every new write that happens
to the end of the log

o Writing a block in the middle of the file just
appends that block to the end of the log




[ LFS and inodes

= How do you locate file data?

o Sequential scan of the log is probably a bad
idea ...

» Solution: Write the inodes to the tail of the
log! (just like regular data)

Log —»

tretlfjeeet il




[ LFS and inodes

= How do you locate file data”

o Sequential scan of the log is probably a bad
idea ...

= Solution: Use FFS-style inodes!

Log—»

1 I s 1 1 o




[ inode map (this is getting fun) ]

= Well, now, how do you find the inodes??
o Could also be anywhere in the log!

= Solution: inode maps
o Maps “file number” to the location of its inode in the log
o Note that inode map is also written to the log!!!!

o Cache inode maps in memory for performance
New inode map block!

. inode
File 2 map I i

Fixed checkpoint region tracks location
of inode map blocks in log

Ckpoint | File 1
area |

|




[ Reading from LFS ]

But wait ... now file data is scattered all over
the disk!

o Seems to obviate all of the benefits of grouping
data on common cylinders

Basic assumption: Buffer cache will handle
most read traffic

o Or at least, reads will happen to data roughly in
the order in which it was written

o Take advantage of huge system memories to
cache the heck out of the FS!

= 1



[ Log cleaner ]
= With LFS, eventually the disk will fill up!

o Need some way to reclaim “dead space”

= What constitutes “dead space?”
o Deleted files
o File blocks that have been “overwritten”

= Solution: Periodic “log cleaning”
= Scan the log and look for deleted or overwritten

blocks
o Effectively, clear out stale log entries

m Copy live data to the end of the log

o The rest of the log (at the beginning) can now be
reused!




[

Log cleaning example

LFS cleaner breaks log into segments

O

O

O

Each segment is scanned by the cleaner
Live blocks from a segment are copied into a new segment
The entire scanned segment can then be reclaimed

Dead i

Empty segment




[ Log cleaning example

LFS cleaner breaks log into segments

o Each segment is scanned by the cleaner

o Live blocks from a segment are copied into a new segment
o The entire scanned segment can then be reclaimed

Cleaner runs




[ Log cleaning example

LFS cleaner breaks log into segments

o Each segment is scanned by the cleaner

o Live blocks from a segment are copied into a new segment
o The entire scanned segment can then be reclaimed

Cleaner runs




[ Log cleaning example

LFS cleaner breaks log into segments

o Each segment is scanned by the cleaner

o Live blocks from a segment are copied into a new segment
o The entire scanned segment can then be reclaimed




[ Properties of LFS ]

Advantages
o High write throughput

o Few in-place writes

Some kinds of storage media have limited write/erase cycles per
location (e.g., flash memory, CD-RW)

LFS prolongs life of media through write-leveling
Disadvantages

o Increases file fragmentation, can harm performance on systems
with high seek times

o Less throughputs on flash memory, where write fragmentation has
much less of an impact on write throughput
“Lies, damn lies, and benchmarks”

o ltis very difficult to come up with definitive benchmarks proving
that one system is better than another

o Can always find a scenario where one system design outperforms
another N ][



[ Filesystem corruption ]

What happens when you are making changes to a
filesystem and the system crashes?

o Example: Modifying block 5 of a large directory, adding lots of new
file entries

o System crashes while the block is being written
o The new files are “lost!”

System runs f£sck program on reboot

o Scans through the entire filesystem and locates corrupted inodes
and directories

o Can typically find the bad directory, but may not be able to repair it!
o  The directory could have been left in any state during the write
fsck can take a very long time on large filesystems

o And, no guarantees that it fixes the problems anyway



[ Journaling filesystems ]

Ensure that changes to the filesystem are

made atomically

o Thatis, a group of changes are made all
together, or not at all

Example: creating a new file

o Need to write both the inode for the new file
and the directory entry “together”

o Otherwise, if a crash happens between the two
writes, either..
1) Directory points to a file that does not exist
2) Or, file is on disk but not included in any directory

o |



[ Journaling filesystems ]

Goal: Make updates to filesystems appear to be atomic

o The directory either looks exactly as it did before the file was
created

o Or the directory looks exactly as it did after the file was created

o Cannot leave an FS entity (data block, inode, directory, etc.) in an
intermediate state!

ldea: Maintain a log of all changes to the filesystem

o Log contains information on any operations performed to the
filesystem state

o e.g., Directory 2841 had inodes 404, 407, and 408 added to it”

To make a filesystem change:
o 1. Write an intent-to-commit record to the log

o 2. Write the appropriate changes to the log
Do not modify the filesystem data directly!!!

o 3. Write a commit record to the log
This is very similar to the notion of database fransactions* 1



[ Journaling FS Recovery

What happens when the system crashes?
o Filesystem data has not actually been modified, just the log!
o S0, the FS itself reflects only what happened before the crash

Periodically synchronize the log with the filesystem data
o Called a checkpoint

o Ensures that the FS data reflects all of the changes in the log
No need to scan the entire filesystem after a crash...

o Only need to look at the log entries since the last checkpoint!
For each log entry, see if the commit record is there

o If not, consider the changes incomplete, and don't try to make
them



[ Journaling FS Example

File 1 File 2

Checkpoint




Journaling FS Example




[ Journaling FS Example

File 1 File 2

Log
= Filesystem reflects changes up to last checkpoint
= Fsck scans changelog from last checkpoint forward

= Doesn't find a commit record ... changes are simply
ignored



Bonus: NFS
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[ More recent filesystems

How can we share filesystems over a
network”?
o NFS, SAN, NAS, Hadoop

How can we make a filesystem resilient to
failures?
o RAID (covered in earlier slides)



[ Networked File System (NFS)

NFS allows a system to access files over a
network
o One of many distributed file systems

o Extremely successful and widely used

You use NFS on all your shared files in the lab
machines



[ Networked File System (NFS)

Development of LANs made it really attractive to provide shared file
systems to all machines on a network

o Login to any machine and see the same set of files

o Install software on a single server that all machines can run

o Let users collaborate on shared set of files (before CVS)

Why might this be hard to do?

o Clients and servers might be running different OS

o  Clients and servers might be using different CPU architecture with
differing byte ordering (endianess)

o  Client or server might crash independently of each other
Must be easy to recover from crashes

Potentially very large number of client machines on a network
Different users might be trying to modify a shared file at the same time

Transparency: Allow user programs to access remote files just like local
files
No special libraries, recompilation, etc.

N 1



[ NFS Overview

NFS was developed by Sun Microsystems in the mid-80s

o  Networked machines at the time were predominantly UNIX-based workstations
o  Various vendors: Sun, DEC, IBM, etc.

o  Different CPU architectures and OS implementations

n But, all used UNIX filesystem structure and semantics

NFS is based on Remote Procedure Call (RPC)

o  Allows a client machine to invoke a function on a server machine, over a network
o  Client sends a message with the function arguments
o  Server replies with a message with the return value.

External Data Representation (XDR) to represent data types
o  Canonical network representation for ints, longs, byte arrays, etc.

o  Clients and servers must translate parameters and return values of RPC calls into
XDR before shipping on the network

o  Otherwise, a little-endian machine and a big-endian machine would disagree on
what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int”



[ NFS Design

Client

Kernel VFS Layer

4

Server

Kernel VFS Layer

|

|

\
ISO9660 FS NFS NFS server ext3fs
RPC/XDR RPC/XDR

Network stack

Network stack

Network



[ Stateless Protocol

The NFS protocol is stateless
o  The server maintains no information about individual clients!

o  This means that NFS does not support any notion of “opening” or
“closing” files

o Each client simply issues read and write requests specifying the file, offset
in the file, and the requested size

Advantages:

o  Server doesn't need to keep track of open/close status of files

o  Server doesn't need to keep track of “file offset” for each client's open
files
Clients do this themselves

o Server doesn't have to do anything to recover from a crash!
Clients simply retry NFS operations until the server comes back up

Disadvantages:

o  Server doesn't keep track of concurrent access to same file

o  Multiple clients might be modifying a file at the same time
NFS does not provide any consistency guarantees!!!

o However, there is a separate locking protocol — discussed later 7 ][



[ NFS Protocol Overview

mount() returns filehandle for root of filesystem
o Actually a separate protocol from NFS...

lookup(dir-handle, filename) returns filehandle, attribs

o Returns unique file handle for a given file
o File handle used in subsequent read/write/etc. calls

create(dir-handle, filename, attributes) returns filehandle
remove(dir-handle, filename) returns status
getattr(filehandle) returns attribs

o Returns attributes of the file, e.g., permissions, owner, group ID,

size, access time, last-modified time
setattr(filehandle, attribs) returns attribs
read(filehandle, offset, size) returns attribs, data
write(filehandle, offset, count, data) returns attribs



[ NFS Caching

NFS clients are responsible for caching recently-accessed data
o Remember: the server is stateless!

The NFS protocol does not require that clients cache data ...
o  But, it provides support allowing a range of client-side caching techniques

This is accomplished through the getattr() call
o Returns size, permissions, and last-modified time of file
o This can tell a client whether a file has changed since it last read it

o Read/write calls also return attributes so client can tell if object was
modified since the last getattr() call

How often should the client use getattr()?

o  Whenever the file is accessed?
Could lead to a lot of getattr calls!

o  Only if the file has not been accessed for some time?
e.g., If the file has not been accessed in 30 sec?

o Different OSs implement this differently!



[ NFS Locking ]

NFS does not prevent multiple clients from
modifying a file simultaneously

o Clearly, this can be a Bad Thing for some
applications...

Solution: Network Lock Manager (NLM)
protocol
o Works alongside NFS to provide file locking

o NFS itself does not know anything about locks

Clients have to use NLM “voluntarily” to avoid
stomping on each other

o NLM has to be stateful
Why’? 78 ]



[ NLM Protocol

NLM server has to keep track of locks held by clients

If the NLM server crashes...

o All locks are released!

o BUT ... clients can reestablish locks during a “grace period” after the

server recovers
No new locks are granted during the grace period
Server has to remember which locks were previously held by clients

If an NLM client crashes...

o  The server is notified when the client recovers and releases all of its locks
What happens if a client crashes and does not come back up for a while?

Servers and clients must be notified when they crash and

recover
o  This is done with the simple “Network Status Monitor” (NSM) protocol
o Essentially, send a natification to the other host when you reboot



[ NLM Example ]

Client A “lock file foo, offset 0 len 512”

“lock granted”

“lock file foo, offset O len 512"

Client A,
\ f00[0..512]

Client B



[ NLM Example

Client A
Client B




[ NLM Example

Client A

Restart notification

Client B

Client A,

\ £00[0..512]



[ NLM Example ]

Client A “relock file foo, offset 0 len 512"

“lock granted”

Server

Client A,
= "\ £00[0..512]

Client B



