

1

Filesystems

Based on slides by Matt Welsh, Harvard

Announcements
  MP8 due tomorrow night
  Finals approaching, know your times and conflicts

  Ours: Friday May 11, 1:30 – 4:30 pm
  Review material similar to midterm released by Friday

  Topic outline
  Practice final exam

  Review sessions
  Vote on Piazza for times that work for you
  Do this by midnight Tuesday; results announced Wed.

  Honors section demos
  Vote on Piazza for times that work for you
  Do this by Wednesday

2

Filesystems
  A filesystem provides a high-level application access to disk

  As well as CD, DVD, tape, floppy, etc...
  Masks the details of low-level sector-based I/O operations
  Provides structured access to data (files and directories)
  Caches recently-accessed data in memory

  Hierarchical filesystems: Most common type
  Organized as a tree of directories and files

  Byte-oriented vs. record-oriented files
  UNIX, Windows, etc. all provide byte-oriented file access

  May read and write files a byte at a time
  Many older OS's provided only record-oriented files

  File composed of a set of records; may only read and write a record at a time

  Versioning filesystems
  Keep track of older versions of files
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

3

Filesystem Operations
  Filesystems provide a standard interface to files and directories:

  Create a file or directory
  Delete a file or directory
  Open a file or directory – allows subsequent access
  Read, write, append to file contents
  Add or remove directory entries
  Close a file or directory – terminates access

  What other features do filesystems provide?
  Accounting and quotas – prevent your classmates from hogging the disks
  Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots
  Indexing and search capabilities
  File versioning
  Encryption
  Automatic compression of infrequently-used files

  Should this functionality be part of the filesystem or built on top?
  Classic OS community debate: Where is the best place to put functionality?

4

Basic Filesystem Structures
  Every file and directory is represented by an inode

  Stands for “index node”

  Contains two kinds of information:
  1) Metadata describing the file's owner, access rights, etc.
  2) Location of the file's blocks on disk

5

Directories
  A directory is a special kind of file that contains a list of (filename,

inode number) pairs

  These are the contents of the directory “file data” itself – NOT the
directory's inode!

  Filenames (in UNIX) are not stored in the inode at all!
  Two open questions:

  How do we find the root directory (“ / “ on UNIX systems)?
  How do we get from an inode number to the location of the inode on disk?

6

Pathname resolution
  To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

7

Locating inodes on disk
  All right, so directories tell us the inode number of a file.

  How the heck do we find the inode itself on disk?
  Basic idea: Top part of filesystem contains all of the inodes!

  inode number is just the “index” of the inode
  Easy to compute the block address of a given inode:

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

  This implies that a filesystem has a fixed number of potential inodes
  This number is generally set when the filesystem is created

  The superblock stores important metadata on filesystem layout, list of free
blocks, etc.

8

Stupid directory tricks
  Directories map filenames to inode numbers. What does this imply?
  We can create multiple pointers to the same inode in different

directories
  Or even the same directory with different filenames

  In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)
bash$ ln /home/foo /tmp/foo
bash$ ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk
  Not a copy! You will always see identical data no matter which filename you

use to read or write the file.
  Note: This is not the same as a “symbolic link”, which only links one

filename to another.
9

How should we organize blocks on a disk?
  Very simple policy: A file consists of linked blocks

  inode points to the first block of the file
  Each block points to the next block in the file (just a linked list on disk)

  What are the advantages and disadvantages??

  Indexed files
  inode contains a list of block numbers containing the file
  Array is allocated when the file is created

  What are the advantages and disadvantages??

10

Multilevel indexed files
  inode contains a list of 10-15 direct block pointers

  First few blocks of file can be referred to by the inode itself

  inode also contains a pointer to a single indirect, double
indirect, and triple indirect blocks
  Allows file to grow to be incredibly large!!!

11

File system caching
  Most filesystems cache significant amounts of disk in

memory
  e.g., Linux tries to use all “free” physical memory as a giant cache
  Avoids huge overhead for going to disk for every I/O

12

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

13

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

14

Caching issues (2)
  Reliability issues

  What happens when you write to the cache but the system crashes?
  What if you update some of the blocks on disk but not others?

  Example: Update the inode on disk but not the data blocks?
  Write-through cache: All writes immediately sent to disk
  Write-back cache: Cache writes stored in memory until evicted (then

written to disk)
  Which is better for performance? For reliability?

15

Caching issues (2)
  “Syncing” a filesystem writes back any dirty cache

blocks to disk
  UNIX “sync” command achieves this.
  Can also use fsync() system call to sync any blocks for a given file.

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to
the disk!

  This is also complicated by memory caching on the disk itself.

  Crash recovery
  If system crashes before sync occurs, “fsck” checks the filesystem

for errors
  Example: an inode pointing to a block that is marked as free in the

free block list
  Another example: An inode with no directory entry pointing to it

  These usually get linked into a “lost+found” directory
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

16

Caching and fsync() example
  Running the copy example from last time,

  How fast is it the first time, vs. the second time
you copy the same file?

  What happens if we fsync() after each
iteration?

17

Caching issues (3)
  Read ahead

  Recall: Seek time dominates overhead of disk I/O
  So, would ideally like to read multiple blocks into memory when

you have a cache miss
  Amortize the cost of the seek for multiple reads

  Useful if file data is laid out in contiguous blocks on disk
  Especially if the application is performing sequential access to the file

18

Making filesystems resilient:
RAID

Copyright ©: University of Illinois CS
241 Staff

19

RAID Motivation
  Speed of disks not matching other components

  Moore’s law: CPU speed doubles every 18 months
  SRAM speeds increasing by 40-100% a year
  In contrast, disk seek time only improving 7% a year

  Although greater density leads to improved transfer times once seek is done

  Emergence of PCs starting to drive down costs of disks
  (This is 1988 after all)
  PC-class disks were smaller, cheaper, and only marginally slower

20

RAID Motivation
  Basic idea: Build I/O systems as arrays of cheap

disks
  Allow data to be striped across multiple disks
  Means you can read/write multiple disks in parallel –

greatly improve performance
  Problem: disks are extremely unreliable
  Mean Time to Failure (MTTF)

  MTTF (disk array) = MTTF (single disk) / # disks
  Adding more disks means that failures happen more

frequently..
  An array of 100 disks with an MTTF of 30,000 hours =

just under 2 weeks for the array’s MTTF!

21

Increasing reliability
  Idea: Replicate data across multiple disks

  When a disk fails, lost information can be regenerated from the
redundant data

  Simplest form: Mirroring (also called “RAID 1”)
  All data is mirrored across two disks

  Advantages:
  Reads are faster, since both disks can be read in parallel
  Higher reliability (of course)

  Disadvantages:
  Writes are slightly slower, since OS must wait for both disks to do

write
  Doubles the cost of the storage system!

22

RAID 3
  Rather than mirroring, use parity codes

  Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an
even number of “1” bits in the set {b1, b2, ..., bN, P}

  Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P)
to recover it.

  Where to store the parity codes?
  Add an extra “check disk” that stores parity bits for the data stored on the

rest of the N disks
  Advantages:

  If a single disk fails, can easily recompute the lost data from the parity
code

  Can use one parity disk for several data disks (reduces cost)

  Disadvantages:
  Each write to a block must update the corresponding parity block as well

23

RAID 3 example

24

RAID 3 example

25

RAID 3 example

26

RAID 3 example

27

RAID 3 example

  1. Read back data from other disks
  2. Recalculate lost data from parity code
  3. Rebuild data on lost disk

28

RAID 3 issues
  Terminology

  MTTF = mean time to failure
  MTTR = mean time to repair

  What is the MTTF of RAID?
  Both RAID 1 and RAID 3 tolerate the failure of a single disk
  As long as a second disk does not die while we are repairing the first

failure, we are in good shape!

  So, what is the probability of a second disk failure?
  P(2nd failure) ≈ MTTR / (MTTF of one disk / # disks -1)

  Assumes independent, exponential failure rates; see Patterson RAID paper for derivation

  10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
  P(2nd failure) ≈ 1 day / (1000 / 9) = 0.009

  What is the performance of RAID 3?
  Check disk must be updated each time there is a write
  Problem: The check disk is then a performance bottleneck

  Only a single read/write can be done at once on the whole system!
29

RAID 5
  Another approach: Interleaved check blocks (“RAID 5”)

  Rotate the assignment of data blocks and check blocks across
disks

  Avoids the bottleneck of a single disk for storing check data
  Allows multiple reads/writes to occur in parallel (since different

disks affected)

30

Reliable distributed storage
  Today, giant data stores distributed across 100s of

thousands of disks across the world
  e.g., your mail on gmail

  “You know you have a large storage system when you
get paged at 1 AM because you only have a few
petabytes of storage left.”
  – a “note from the trenches” at Google

31

Reliable distributed storage
  Issues

  Failure is the common case
  Google reports 2-10% of disks fail per year
  Now multiply that by 60,000+ disks in a single warehouse...

  Must survive failure of not just a disk, but a rack of servers or a
whole data center

  Solutions
  Simple redundancy (2 or 3 copies of each file)

  e.g., Google GFS (2001)
  More efficient redundancy (analogous to RAID 3++)

  e.g., Google Colossus filesystem (~2010): customizable
replication including Reed-Solomon codes with 1.5x
redundancy

  More interesting tidbits: http://goo.gl/LwFIy

32

Today only!

33

Randy Katz
Distinguished Professor,
University of California at
Berkeley

“Mesos: A Platform for
Fine-Grained Resource
Sharing in the Data Center”

4:00 p.m. Today
2405 Siebel Center

Copyright ©: University of Illinois CS
241 Staff

34

Bonus: Atomic write failures in
RAID (not on exam)

Atomic Write Failure
  Many applications perform “update in

place”
  They change a file on disk by overwriting it with

a new version
  What happens with RAID?

35

Atomic Write Failure
  But is the complete write to all disks really

atomic?
  Generally, no!

36

Atomic Write Failure
  But is the complete write to all disks really atomic?

  Generally, no!

  What does this mean?
  Data can be left in an inconsistent state across the different disks!
  Really hard to recover from this.

  Problem: Most applications assume the storage system
has atomic write semantics.

  Possible fixes?
  Use a journaling filesystem-like approach: Record changes to data

objects transactionally.
  Requires extensive changes to filesystem sitting on top of the RAID.

  Battery-backed write cache:
  RAID controller remembers all writes in a battery-backed cache
  When recovery occurs, flush all writes out to the physical disks
  Doesn't solve the problem in general but gives you some insurance.

37

Copyright ©: University of Illinois CS
241 Staff

38

Bonus: Modern Filesystem
techniques (not on exam)

Modern Filesystem Tricks
  Extents
  Pre-allocation
  Delayed allocation (Block remapping)
  Colocating inodes and directories
  Soft metadata updates
  Journaling
  These tricks are used by many modern

filesystems
  E.g., ext3 and ext4

39

Extent-based transfers
  One idea: a gap between sectors on a track

  Try to take advantage of rotational latency for
performing next read or write operation

  Problem: Hurts performance for multi-sector I/
O!

  Cannot achieve the full transfer rate of the disk
for large, contiguous reads or writes.

  Possible fix: Just get rid of the gap between
sectors
  Problem: “Dropped rotation” between

consecutive reads or writes: have to wait for
next sector to come around under the heads.

40

  Hybrid approach - “extents” [McVoy, USENIX'91]
  Group blocks into “extents” or clusters of contiguous blocks
  Try to do all I/O on extents rather than individual blocks
  To avoid wasting I/O bandwidth, only do this when FS detects

sequential access
  Kind of like just increasing the block size...

Block remapping
  Problem: Block numbers are allocated when they

are first written
  FS maintains a free list of blocks and simply picks the

first block off the list
  No guarantee that these blocks will be contiguous for a large

write!

  A single file may end up with blocks scattered across
the disk

  Why can't we maintain the free list in some sorted
order?
  Problem: Interleaved writes to multiple files may end up

causing each file to be discontiguous.

41

Block remapping
  Idea: Delay determination of block address until cache is flushed

  Hope that multiple block writes will accumulate in the cache
  Can remap the block addresses for each file's writes to a contiguous set

  This is kind of a hack, introduced “underneath” the FFS block allocation layer.
  Meant fewer changes to the rest of the FFS code.
  Sometimes building real systems means making these kinds of tradeoffs!

42

Colocating inodes and directories
  Problem: Reading small files is slow. Why?

  What happens when you try to read all files in a directory (e.g., “ls
-l” or “grep foo *”) ?

  Must first read directory.
  Then read inode for each file.
  Then read data pointed to by inode.

  Solution: Embed the inodes in the directory itself!
  Recall: Directory just a set of <name, inode #> values
  Why not stuff inode contents in the directory file itself?

  Problem #2: Must still seek to read contents of each file in
the directory.
  Solution: Pack all files in a directory in a contiguous set of blocks.

43

Synchronous metadata updates
  Problem: Some updates to metadata

require synchronous writes
  Means the data has to “hit the disk” before

anything else can be done.
  Example #1: Creating a file

  Must write the new file's inode to disk before
the corresponding directory entry.
  Why???

  Example #2: Deleting a file
  Must clear out the directory entry before

marking the inode as “free”
  Why??? 44

Synchronous metadata updates
  Problem: Some updates to metadata require synchronous writes

  Means the data has to “hit the disk” before anything else can be done.
  Example #1: Creating a file

  Must write the new file's inode to disk before the corresponding directory
entry.
  Why???

  Example #2: Deleting a file
  Must clear out the directory entry before marking the inode as “free”

  Why???

45

Synchronous metadata updates
  Say that ...

  1) Both inodes are in the
same disk block.

  2) Both the file create
and file delete have
happened in the cache,
but neither has hit the
disk yet.

  Given this, what order
are we allowed to write
the disk blocks out?
  We have a cyclic

dependency here!!!
Arggghhhh

46

Solution: Soft Updates
  Idea: Keep track of

dependencies on a
finer granularity
  Rather than at a

block level, do this at
a “data structure
level”

  Example: Track
dependencies on
individual inodes or
directory entries.

47

Soft Updates - Example
  How to break the cyclic

dependency?
  “Roll back” one of the

changes before writing the
data out to disk!

  When flushing inode block
(Block 2) to disk...
  Undo the file delete operation

(as if it never happened!)
  Write out the inode block

(Block 2) – still contains B!
  Then write out the directory

block (Block 1) – still contains
entry for B!

  Then redo the file delete
operation ... can now
proceed. 48

Log-structured Fileystems (LFS)
  Around '91, two trends in disk technology were emerging:

  Disk bandwidth was increasing rapidly (over 40% a year)
  Seek latency not improving much at all
  Machines had increasingly large main memories

  Large buffer caches absorb a large fraction of read I/Os

  Can use for writes as well!
  Coalesce several small writes into one larger write

  Some lingering problems with earlier filesystems...
  Writing to file metadata (inodes) was required to be synchronous

  Couldn't buffer metadata writes in memory

  Lots of small writes to file metadata means lots of seeks!

  LFS takes advantage of both to increase FS performance
  Started as a grad-school research project at Berkeley
  Mendel Rosenblum and John Ousterhout

49

LFS: The basic idea
  Treat the entire disk as one big append-only log for writes!

  Don't try to lay out blocks on disk in some predetermined order
  Whenever a file write occurs, append it to the end of the log
  Whenever file metadata changes, append it to the end of the log

  Collect pending writes in memory and stream out in one
big write
  Maximizes disk bandwidth
  No “extra” seeks required (only those to move the end of the log)

  When do writes to the actual disk happen?
  When a user calls sync() -- synchronize data on disk for whole

filesystem
  When a user calls fsync() -- synchronize data on disk for one file
  When OS needs to reclaim dirty buffer cache pages

  Note that this can often be avoided, eg., by preferring clean pages

  Sounds simple ...
  But lots of hairy details to deal with!

50

LFS Example

  Just append every new write that happens
to the end of the log
  Writing a block in the middle of the file just

appends that block to the end of the log

51

LFS and inodes
  How do you locate file data?

  Sequential scan of the log is probably a bad
idea ...

  Solution: Write the inodes to the tail of the
log! (just like regular data)

52

LFS and inodes
  How do you locate file data?

  Sequential scan of the log is probably a bad
idea ...

  Solution: Use FFS-style inodes!

53

inode map (this is getting fun)
  Well, now, how do you find the inodes??

  Could also be anywhere in the log!

  Solution: inode maps
  Maps “file number” to the location of its inode in the log
  Note that inode map is also written to the log!!!!
  Cache inode maps in memory for performance

54

Reading from LFS
  But wait ... now file data is scattered all over

the disk!
  Seems to obviate all of the benefits of grouping

data on common cylinders
  Basic assumption: Buffer cache will handle

most read traffic
  Or at least, reads will happen to data roughly in

the order in which it was written
  Take advantage of huge system memories to

cache the heck out of the FS!

55

Log cleaner
  With LFS, eventually the disk will fill up!

  Need some way to reclaim “dead space”

  What constitutes “dead space?”
  Deleted files
  File blocks that have been “overwritten”

  Solution: Periodic “log cleaning”
  Scan the log and look for deleted or overwritten

blocks
  Effectively, clear out stale log entries

  Copy live data to the end of the log
  The rest of the log (at the beginning) can now be

reused!
56

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

57

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

58

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

59

Log cleaning example
  LFS cleaner breaks log into segments

  Each segment is scanned by the cleaner
  Live blocks from a segment are copied into a new segment
  The entire scanned segment can then be reclaimed

60

Properties of LFS
  Advantages

  High write throughput
  Few in-place writes

  Some kinds of storage media have limited write/erase cycles per
location (e.g., flash memory, CD-RW)

  LFS prolongs life of media through write-leveling

  Disadvantages
  Increases file fragmentation, can harm performance on systems

with high seek times
  Less throughputs on flash memory, where write fragmentation has

much less of an impact on write throughput

  “Lies, damn lies, and benchmarks”
  It is very difficult to come up with definitive benchmarks proving

that one system is better than another
  Can always find a scenario where one system design outperforms

another
61

Filesystem corruption
  What happens when you are making changes to a

filesystem and the system crashes?
  Example: Modifying block 5 of a large directory, adding lots of new

file entries
  System crashes while the block is being written
  The new files are “lost!”

  System runs fsck program on reboot
  Scans through the entire filesystem and locates corrupted inodes

and directories
  Can typically find the bad directory, but may not be able to repair it!
  The directory could have been left in any state during the write

  fsck can take a very long time on large filesystems
  And, no guarantees that it fixes the problems anyway

62

Journaling filesystems
  Ensure that changes to the filesystem are

made atomically
  That is, a group of changes are made all

together, or not at all
  Example: creating a new file

  Need to write both the inode for the new file
and the directory entry “together”

  Otherwise, if a crash happens between the two
writes, either..
  1) Directory points to a file that does not exist
  2) Or, file is on disk but not included in any directory

63

Journaling filesystems
  Goal: Make updates to filesystems appear to be atomic

  The directory either looks exactly as it did before the file was
created

  Or the directory looks exactly as it did after the file was created
  Cannot leave an FS entity (data block, inode, directory, etc.) in an

intermediate state!

  Idea: Maintain a log of all changes to the filesystem
  Log contains information on any operations performed to the

filesystem state
  e.g., “Directory 2841 had inodes 404, 407, and 408 added to it”

  To make a filesystem change:
  1. Write an intent-to-commit record to the log
  2. Write the appropriate changes to the log

  Do not modify the filesystem data directly!!!

  3. Write a commit record to the log

  This is very similar to the notion of database transactions 64

Journaling FS Recovery
  What happens when the system crashes?

  Filesystem data has not actually been modified, just the log!
  So, the FS itself reflects only what happened before the crash

  Periodically synchronize the log with the filesystem data
  Called a checkpoint
  Ensures that the FS data reflects all of the changes in the log

  No need to scan the entire filesystem after a crash...
  Only need to look at the log entries since the last checkpoint!

  For each log entry, see if the commit record is there
  If not, consider the changes incomplete, and don't try to make

them

65

Journaling FS Example

66

Journaling FS Example

67

Journaling FS Example

  Filesystem reflects changes up to last checkpoint
  Fsck scans changelog from last checkpoint forward
  Doesn't find a commit record ... changes are simply

ignored 68

Copyright ©: University of Illinois CS
241 Staff

69

Bonus: NFS

More recent filesystems

  How can we share filesystems over a
network?
  NFS, SAN, NAS, Hadoop

  How can we make a filesystem resilient to
failures?
  RAID (covered in earlier slides)

70

Networked File System (NFS)
  NFS allows a system to access files over a

network
  One of many distributed file systems
  Extremely successful and widely used

  You use NFS on all your shared files in the lab
machines

71

Networked File System (NFS)
  Development of LANs made it really attractive to provide shared file

systems to all machines on a network
  Login to any machine and see the same set of files
  Install software on a single server that all machines can run
  Let users collaborate on shared set of files (before CVS)

  Why might this be hard to do?
  Clients and servers might be running different OS
  Clients and servers might be using different CPU architecture with

differing byte ordering (endianess)
  Client or server might crash independently of each other

  Must be easy to recover from crashes

  Potentially very large number of client machines on a network
  Different users might be trying to modify a shared file at the same time
  Transparency: Allow user programs to access remote files just like local

files
  No special libraries, recompilation, etc.

72

NFS Overview
  NFS was developed by Sun Microsystems in the mid-80s

  Networked machines at the time were predominantly UNIX-based workstations
  Various vendors: Sun, DEC, IBM, etc.
  Different CPU architectures and OS implementations

  But, all used UNIX filesystem structure and semantics

  NFS is based on Remote Procedure Call (RPC)
  Allows a client machine to invoke a function on a server machine, over a network
  Client sends a message with the function arguments
  Server replies with a message with the return value.

  External Data Representation (XDR) to represent data types
  Canonical network representation for ints, longs, byte arrays, etc.
  Clients and servers must translate parameters and return values of RPC calls into

XDR before shipping on the network
  Otherwise, a little-endian machine and a big-endian machine would disagree on

what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int”

73

NFS Design

74

Stateless Protocol
  The NFS protocol is stateless

  The server maintains no information about individual clients!
  This means that NFS does not support any notion of “opening” or
“closing” files

  Each client simply issues read and write requests specifying the file, offset
in the file, and the requested size

  Advantages:
  Server doesn't need to keep track of open/close status of files
  Server doesn't need to keep track of “file offset” for each client's open

files
  Clients do this themselves

  Server doesn't have to do anything to recover from a crash!
  Clients simply retry NFS operations until the server comes back up

  Disadvantages:
  Server doesn't keep track of concurrent access to same file
  Multiple clients might be modifying a file at the same time

  NFS does not provide any consistency guarantees!!!

  However, there is a separate locking protocol – discussed later 75

NFS Protocol Overview
  mount() returns filehandle for root of filesystem

  Actually a separate protocol from NFS...

  lookup(dir-handle, filename) returns filehandle, attribs
  Returns unique file handle for a given file
  File handle used in subsequent read/write/etc. calls

  create(dir-handle, filename, attributes) returns filehandle
  remove(dir-handle, filename) returns status
  getattr(filehandle) returns attribs

  Returns attributes of the file, e.g., permissions, owner, group ID,
size, access time, last-modified time

  setattr(filehandle, attribs) returns attribs
  read(filehandle, offset, size) returns attribs, data
  write(filehandle, offset, count, data) returns attribs

76

NFS Caching

  NFS clients are responsible for caching recently-accessed data
  Remember: the server is stateless!

  The NFS protocol does not require that clients cache data ...
  But, it provides support allowing a range of client-side caching techniques

  This is accomplished through the getattr() call
  Returns size, permissions, and last-modified time of file
  This can tell a client whether a file has changed since it last read it
  Read/write calls also return attributes so client can tell if object was

modified since the last getattr() call
  How often should the client use getattr()?

  Whenever the file is accessed?
  Could lead to a lot of getattr calls!

  Only if the file has not been accessed for some time?
  e.g., If the file has not been accessed in 30 sec?

  Different OSs implement this differently!

77

NFS Locking
  NFS does not prevent multiple clients from

modifying a file simultaneously
  Clearly, this can be a Bad Thing for some

applications...
  Solution: Network Lock Manager (NLM)

protocol
  Works alongside NFS to provide file locking
  NFS itself does not know anything about locks

  Clients have to use NLM “voluntarily” to avoid
stomping on each other

  NLM has to be stateful
  Why? 78

NLM Protocol
  NLM server has to keep track of locks held by clients
  If the NLM server crashes...

  All locks are released!
  BUT ... clients can reestablish locks during a “grace period” after the

server recovers
  No new locks are granted during the grace period
  Server has to remember which locks were previously held by clients

  If an NLM client crashes...
  The server is notified when the client recovers and releases all of its locks

  What happens if a client crashes and does not come back up for a while?

  Servers and clients must be notified when they crash and
recover
  This is done with the simple “Network Status Monitor” (NSM) protocol
  Essentially, send a notification to the other host when you reboot

79

NLM Example

80

Client A

Client B

Server

“lock file foo, offset 0 len 512”

“lock granted”

“lock file foo, offset 0 len 512”

“denied!”

Client A,
foo[0…512]

NLM Example

81

Client A

Client B

Server

Client A,
foo[0…512]

NLM Example

82

Client A

Client B

Server Restart notification

Client A,
foo[0…512]

NLM Example

83

Client A

Client B

Server

“relock file foo, offset 0 len 512”

“lock granted”

Client A,
foo[0…512]

check

