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Filesystems 

Based on slides by Matt Welsh, Harvard 



Announcements 
  MP8 due tomorrow night 
  Finals approaching, know your times and conflicts 

  Ours: Friday May 11,  1:30 – 4:30 pm 
  Review material similar to midterm released by Friday 

  Topic outline 
  Practice final exam 

  Review sessions 
  Vote on Piazza for times that work for you 
  Do this by midnight Tuesday; results announced Wed. 

  Honors section demos 
  Vote on Piazza for times that work for you 
  Do this by Wednesday 
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Filesystems 
  A filesystem provides a high-level application access to disk 

  As well as CD, DVD, tape, floppy, etc... 
  Masks the details of low-level sector-based I/O operations 
  Provides structured access to data (files and directories) 
  Caches recently-accessed data in memory 

  Hierarchical filesystems: Most common type 
  Organized as a tree of directories and files 

  Byte-oriented vs. record-oriented files 
  UNIX, Windows, etc. all provide byte-oriented file access 

  May read and write files a byte at a time 
  Many older OS's provided only record-oriented files 

  File composed of a set of records; may only read and write a record at a time 

  Versioning filesystems 
  Keep track of older versions of files 
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 
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Filesystem Operations 
  Filesystems provide a standard interface to files and directories: 

  Create a file or directory 
  Delete a file or directory 
  Open a file or directory – allows subsequent access 
  Read, write, append to file contents 
  Add or remove directory entries 
  Close a file or directory – terminates access 

  What other features do filesystems provide? 
  Accounting and quotas – prevent your classmates from hogging the disks 
  Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 
  Indexing and search capabilities 
  File versioning 
  Encryption 
  Automatic compression of infrequently-used files 

  Should this functionality be part of the filesystem or built on top? 
  Classic OS community debate: Where is the best place to put functionality? 
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Basic Filesystem Structures 
  Every file and directory is represented by an inode 

  Stands for “index node” 

  Contains two kinds of information: 
  1) Metadata describing the file's owner, access rights, etc. 
  2) Location of the file's blocks on disk 
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Directories 
  A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

  These are the contents of the directory “file data” itself – NOT the 
directory's inode! 

  Filenames (in UNIX) are not stored in the inode at all! 
  Two open questions: 

  How do we find the root directory (“ / “ on UNIX systems)? 
  How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 
  To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 
  All right, so directories tell us the inode number of a file. 

  How the heck do we find the inode itself on disk? 
  Basic idea: Top part of filesystem contains all of the inodes! 

  inode number is just the “index” of the inode 
  Easy to compute the block address of a given inode: 

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size) 

  This implies that a filesystem has a fixed number of potential inodes 
  This number is generally set when the filesystem is created 

  The superblock stores important metadata on filesystem layout, list of free 
blocks, etc. 
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Stupid directory tricks 
  Directories map filenames to inode numbers. What does this imply? 
  We can create multiple pointers to the same inode in different 

directories 
  Or even the same directory with different filenames 

  In UNIX this is called a “hard link” and can be done using “ln” 

bash$ ls -i /home/foo 
287663 /home/foo       (This is the inode number of “foo”) 
bash$ ln /home/foo /tmp/foo 
bash$ ls -i /home/foo /tmp/foo 
287663 /home/foo 
287663 /tmp/foo 
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk 
  Not a copy! You will always see identical data no matter which filename you 

use to read or write the file. 
  Note: This is not the same as a “symbolic link”, which only links one 

filename to another. 
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How should we organize blocks on a disk? 
  Very simple policy: A file consists of linked blocks 

  inode points to the first block of the file 
  Each block points to the next block in the file (just a linked list on disk) 

  What are the advantages and disadvantages?? 

  Indexed files 
  inode contains a list of block numbers containing the file 
  Array is allocated when the file is created 

  What are the advantages and disadvantages?? 
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Multilevel indexed files 
  inode contains a list of 10-15 direct block pointers 

  First few blocks of file can be referred to by the inode itself 

  inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks 
  Allows file to grow to be incredibly large!!! 
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File system caching 
  Most filesystems cache significant amounts of disk in 

memory 
  e.g., Linux tries to use all “free” physical memory as a giant cache 
  Avoids huge overhead for going to disk for every I/O 
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Caching issues 
  Where should the cache go? 

  Below the filesystem layer: Cache individual disk blocks 
  Above the filesystem layer: Cache entire files and directories 
  Which is better?? 
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Caching issues (2) 
  Reliability issues 

  What happens when you write to the cache but the system crashes? 
  What if you update some of the blocks on disk but not others? 

  Example: Update the inode on disk but not the data blocks? 
  Write-through cache: All writes immediately sent to disk 
  Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 
  Which is better for performance? For reliability? 
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Caching issues (2) 
  “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
  UNIX “sync” command achieves this. 
  Can also use fsync() system call to sync any blocks for a given file. 

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 
the disk! 

  This is also complicated by memory caching on the disk itself. 

  Crash recovery 
  If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 
  Example: an inode pointing to a block that is marked as free in the 

free block list 
  Another example: An inode with no directory entry pointing to it 

  These usually get linked into a “lost+found” directory  
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching and fsync() example 
  Running the copy example from last time, 

  How fast is it the first time, vs. the second time 
you copy the same file? 

  What happens if we fsync() after each 
iteration? 
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Caching issues (3) 
  Read ahead 

  Recall: Seek time dominates overhead of disk I/O 
  So, would ideally like to read multiple blocks into memory when 

you have a cache miss 
  Amortize the cost of the seek for multiple reads 

  Useful if file data is laid out in contiguous blocks on disk 
  Especially if the application is performing sequential access to the file 
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Making filesystems resilient: 
RAID 
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RAID Motivation 
  Speed of disks not matching other components 

  Moore’s law: CPU speed doubles every 18 months 
  SRAM speeds increasing by 40-100% a year 
  In contrast, disk seek time only improving 7% a year 

  Although greater density leads to improved transfer times once seek is done 

  Emergence of PCs starting to drive down costs of disks 
  (This is 1988 after all) 
  PC-class disks were smaller, cheaper, and only marginally slower 
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RAID Motivation 
  Basic idea: Build I/O systems as arrays of cheap 

disks 
  Allow data to be striped across multiple disks 
  Means you can read/write multiple disks in parallel – 

greatly improve performance 
  Problem: disks are extremely unreliable 
  Mean Time to Failure (MTTF) 

  MTTF (disk array) = MTTF (single disk) / # disks 
  Adding more disks means that failures happen more 

frequently.. 
  An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks for the array’s MTTF! 
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Increasing reliability 
  Idea: Replicate data across multiple disks 

  When a disk fails, lost information can be regenerated from the 
redundant data 

  Simplest form: Mirroring (also called “RAID 1”) 
  All data is mirrored across two disks 

  Advantages: 
  Reads are faster, since both disks can be read in parallel 
  Higher reliability (of course) 

  Disadvantages: 
  Writes are slightly slower, since OS must wait for both disks to do 

write 
  Doubles the cost of the storage system! 
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RAID 3 
  Rather than mirroring, use parity codes 

  Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an 
even number of “1” bits in the set {b1, b2, ..., bN, P} 

  Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P) 
to recover it. 

  Where to store the parity codes? 
  Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N disks 
  Advantages:  

  If a single disk fails, can easily recompute the lost data from the parity 
code 

  Can use one parity disk for several data disks (reduces cost) 

  Disadvantages: 
  Each write to a block must update the corresponding parity block as well 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 

  1. Read back data from other disks 
  2. Recalculate lost data from parity code 
  3. Rebuild data on lost disk 
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RAID 3 issues 
  Terminology 

  MTTF = mean time to failure 
  MTTR = mean time to repair 

  What is the MTTF of RAID? 
  Both RAID 1 and RAID 3 tolerate the failure of a single disk 
  As long as a second disk does not die while we are repairing the first 

failure, we are in good shape! 

  So, what is the probability of a second disk failure? 
  P(2nd failure) ≈ MTTR / (MTTF of one disk  / # disks -1) 

  Assumes independent, exponential failure rates; see Patterson RAID paper for derivation 

  10 disks, MTTF (disk) = 1000 days, MTTR = 1 day 
  P(2nd failure) ≈ 1 day / ( 1000 / 9 ) = 0.009 

  What is the performance of RAID 3? 
  Check disk must be updated each time there is a write 
  Problem: The check disk is then a performance bottleneck 

  Only a single read/write can be done at once on the whole system! 
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RAID 5 
  Another approach: Interleaved check blocks (“RAID 5”) 

  Rotate the assignment of data blocks and check blocks across 
disks 

  Avoids the bottleneck of a single disk for storing check data 
  Allows multiple reads/writes to occur in parallel (since different 

disks affected) 
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Reliable distributed storage 
  Today, giant data stores distributed across 100s of 

thousands of disks across the world 
  e.g., your mail on gmail 

  “You know you have a large storage system when you 
get paged at 1 AM because you only have a few 
petabytes of storage left.” 
  – a “note from the trenches” at Google 
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Reliable distributed storage 
  Issues 

  Failure is the common case 
  Google reports 2-10% of disks fail per year 
  Now multiply that by 60,000+ disks in a single warehouse... 

  Must survive failure of not just a disk, but a rack of servers or a 
whole data center 

  Solutions 
  Simple redundancy (2 or 3 copies of each file) 

  e.g., Google GFS (2001) 
  More efficient redundancy (analogous to RAID 3++) 

  e.g., Google Colossus filesystem (~2010): customizable 
replication including Reed-Solomon codes with 1.5x 
redundancy 

  More interesting tidbits: http://goo.gl/LwFIy 
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Today only! 
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Bonus: Atomic write failures in 
RAID (not on exam) 



Atomic Write Failure 
  Many applications perform “update in 

place” 
  They change a file on disk by overwriting it with 

a new version 
  What happens with RAID? 
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Atomic Write Failure 
  But is the complete write to all disks really 

atomic? 
  Generally, no! 
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Atomic Write Failure 
  But is the complete write to all disks really atomic? 

  Generally, no! 

  What does this mean? 
  Data can be left in an inconsistent state across the different disks! 
  Really hard to recover from this. 

  Problem: Most applications assume the storage system 
has atomic write semantics. 

  Possible fixes? 
  Use a journaling filesystem-like approach: Record changes to data 

objects transactionally. 
  Requires extensive changes to filesystem sitting on top of the RAID. 

  Battery-backed write cache: 
  RAID controller remembers all writes in a battery-backed cache 
  When recovery occurs, flush all writes out to the physical disks 
  Doesn't solve the problem in general but gives you some insurance. 
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Bonus: Modern Filesystem 
techniques (not on exam) 



Modern Filesystem Tricks 
  Extents 
  Pre-allocation 
  Delayed allocation (Block remapping) 
  Colocating inodes and directories 
  Soft metadata updates 
  Journaling 
  These tricks are used by many modern 

filesystems 
  E.g., ext3 and ext4 
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Extent-based transfers 
  One idea: a gap between sectors on a track 

  Try to take advantage of rotational latency for 
performing next read or write operation 

  Problem: Hurts performance for multi-sector I/
O! 

  Cannot achieve the full transfer rate of the disk 
for large, contiguous reads or writes. 

  Possible fix: Just get rid of the gap between 
sectors 
  Problem: “Dropped rotation” between 

consecutive reads or writes: have to wait for 
next sector to come around under the heads. 
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  Hybrid approach - “extents” [McVoy, USENIX'91] 
  Group blocks into “extents” or clusters of contiguous blocks 
  Try to do all I/O on extents rather than individual blocks 
  To avoid wasting I/O bandwidth, only do this when FS detects 

sequential access 
  Kind of like just increasing the block size... 



Block remapping 
  Problem: Block numbers are allocated when they 

are first written 
  FS maintains a free list of blocks and simply picks the 

first block off the list 
  No guarantee that these blocks will be contiguous for a large 

write! 

  A single file may end up with blocks scattered across 
the disk 

  Why can't we maintain the free list in some sorted 
order? 
  Problem: Interleaved writes to multiple files may end up 

causing each file to be discontiguous. 
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Block remapping 
  Idea: Delay determination of block address until cache is flushed 

  Hope that multiple block writes will accumulate in the cache 
  Can remap the block addresses for each file's writes to a contiguous set 

  This is kind of a hack, introduced “underneath” the FFS block allocation layer. 
  Meant fewer changes to the rest of the FFS code. 
  Sometimes building real systems means making these kinds of tradeoffs! 
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Colocating inodes and directories 
  Problem: Reading small files is slow. Why? 

  What happens when you try to read all files in a directory (e.g., “ls 
-l” or “grep foo *”) ? 

  Must first read directory. 
  Then read inode for each file. 
  Then read data pointed to by inode. 

  Solution: Embed the inodes in the directory itself! 
  Recall: Directory just a set of <name, inode #> values 
  Why not stuff inode contents in the directory file itself? 

  Problem #2: Must still seek to read contents of each file in 
the directory. 
  Solution: Pack all files in a directory in a contiguous set of blocks. 
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Synchronous metadata updates 
  Problem: Some updates to metadata 

require synchronous writes 
  Means the data has to “hit the disk” before 

anything else can be done. 
  Example #1: Creating a file 

  Must write the new file's inode to disk before 
the corresponding directory entry. 
  Why??? 

  Example #2: Deleting a file 
  Must clear out the directory entry before 

marking the inode as “free” 
  Why??? 44 



Synchronous metadata updates 
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Synchronous metadata updates 
  Say that ... 

  1) Both inodes are in the 
same disk block. 

  2) Both the file create 
and file delete have 
happened in the cache, 
but neither has hit the 
disk yet. 

  Given this, what order 
are we allowed to write 
the disk blocks out? 
  We have a cyclic 

dependency here!!! 
Arggghhhh .... 
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Solution: Soft Updates 
  Idea: Keep track of 

dependencies on a 
finer granularity 
  Rather than at a 

block level, do this at 
a “data structure 
level” 

  Example: Track 
dependencies on 
individual inodes or 
directory entries. 
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Soft Updates - Example 
  How to break the cyclic 

dependency? 
  “Roll back” one of the 

changes before writing the 
data out to disk! 

  When flushing inode block 
(Block 2) to disk... 
  Undo the file delete operation 

(as if it never happened!) 
  Write out the inode block 

(Block 2) – still contains B! 
  Then write out the directory 

block (Block 1) – still contains 
entry for B! 

  Then redo the file delete 
operation ... can now 
proceed. 48 



Log-structured Fileystems (LFS) 
  Around '91, two trends in disk technology were emerging: 

  Disk bandwidth was increasing rapidly (over 40% a year) 
  Seek latency not improving much at all 
  Machines had increasingly large main memories 

  Large buffer caches absorb a large fraction of read I/Os 

  Can use for writes as well! 
  Coalesce several small writes into one larger write 

  Some lingering problems with earlier filesystems... 
  Writing to file metadata (inodes) was required to be synchronous 

  Couldn't buffer metadata writes in memory 

  Lots of small writes to file metadata means lots of seeks! 

  LFS takes advantage of both to increase FS performance 
  Started as a grad-school research project at Berkeley 
  Mendel Rosenblum and John Ousterhout 
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LFS: The basic idea 
  Treat the entire disk as one big append-only log for writes! 

  Don't try to lay out blocks on disk in some predetermined order 
  Whenever a file write occurs, append it to the end of the log 
  Whenever file metadata changes, append it to the end of the log 

  Collect pending writes in memory and stream out in one 
big write 
  Maximizes disk bandwidth 
  No “extra” seeks required (only those to move the end of the log) 

  When do writes to the actual disk happen? 
  When a user calls sync() -- synchronize data on disk for whole 

filesystem 
  When a user calls fsync() -- synchronize data on disk for one file 
  When OS needs to reclaim dirty buffer cache pages 

  Note that this can often be avoided, eg., by preferring clean pages 

  Sounds simple ... 
  But lots of hairy details to deal with! 
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LFS Example 

  Just append every new write that happens 
to the end of the log 
  Writing a block in the middle of the file just 

appends that block to the end of the log 
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LFS and inodes 
  How do you locate file data? 

  Sequential scan of the log is probably a bad 
idea ... 

  Solution: Write the inodes to the tail of the 
log! (just like regular data) 
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LFS and inodes 
  How do you locate file data? 

  Sequential scan of the log is probably a bad 
idea ... 

  Solution: Use FFS-style inodes! 
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inode map (this is getting fun) 
  Well, now, how do you find the inodes?? 

  Could also be anywhere in the log! 

  Solution: inode maps 
  Maps “file number” to the location of its inode in the log 
  Note that inode map is also written to the log!!!! 
  Cache inode maps in memory for performance 
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Reading from LFS 
  But wait ... now file data is scattered all over 

the disk! 
  Seems to obviate all of the benefits of grouping 

data on common cylinders 
  Basic assumption: Buffer cache will handle 

most read traffic 
  Or at least, reads will happen to data roughly in 

the order in which it was written 
  Take advantage of huge system memories to 

cache the heck out of the FS! 
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Log cleaner 
  With LFS, eventually the disk will fill up! 

  Need some way to reclaim “dead space” 

  What constitutes “dead space?” 
  Deleted files 
  File blocks that have been “overwritten” 

  Solution: Periodic “log cleaning” 
  Scan the log and look for deleted or overwritten 

blocks 
  Effectively, clear out stale log entries 

  Copy live data to the end of the log 
  The rest of the log (at the beginning) can now be 

reused! 
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Log cleaning example 
  LFS cleaner breaks log into segments 

  Each segment is scanned by the cleaner 
  Live blocks from a segment are copied into a new segment 
  The entire scanned segment can then be reclaimed 
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Log cleaning example 
  LFS cleaner breaks log into segments 

  Each segment is scanned by the cleaner 
  Live blocks from a segment are copied into a new segment 
  The entire scanned segment can then be reclaimed 

60 



Properties of LFS 
  Advantages 

  High write throughput 
  Few in-place writes 

  Some kinds of storage media have limited write/erase cycles per 
location (e.g., flash memory, CD-RW) 

  LFS prolongs life of media through write-leveling 

  Disadvantages 
  Increases file fragmentation, can harm performance on systems 

with high seek times 
  Less throughputs on flash memory, where write fragmentation has 

much less of an impact on write throughput 

  “Lies, damn lies, and benchmarks” 
  It is very difficult to come up with definitive benchmarks proving 

that one system is better than another 
  Can always find a scenario where one system design outperforms 

another 
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Filesystem corruption 
  What happens when you are making changes to a 

filesystem and the system crashes? 
  Example: Modifying block 5 of a large directory, adding lots of new 

file entries 
  System crashes while the block is being written 
  The new files are “lost!” 

  System runs fsck program on reboot 
  Scans through the entire filesystem and locates corrupted inodes 

and directories 
  Can typically find the bad directory, but may not be able to repair it! 
  The directory could have been left in any state during the write 

  fsck can take a very long time on large filesystems 
  And, no guarantees that it fixes the problems anyway 
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Journaling filesystems 
  Ensure that changes to the filesystem are 

made atomically 
  That is, a group of changes are made all 

together, or not at all 
  Example: creating a new file 

  Need to write both the inode for the new file 
and the directory entry “together” 

  Otherwise, if a crash happens between the two 
writes, either.. 
  1) Directory points to a file that does not exist 
  2) Or, file is on disk but not included in any directory 
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Journaling filesystems 
  Goal: Make updates to filesystems appear to be atomic 

  The directory either looks exactly as it did before the file was 
created 

  Or the directory looks exactly as it did after the file was created 
  Cannot leave an FS entity (data block, inode, directory, etc.) in an 

intermediate state! 

  Idea: Maintain a log of all changes to the filesystem 
  Log contains information on any operations performed to the 

filesystem state 
  e.g., “Directory 2841 had inodes 404, 407, and 408 added to it” 

  To make a filesystem change: 
  1. Write an intent-to-commit record to the log 
  2. Write the appropriate changes to the log 

  Do not modify the filesystem data directly!!! 

  3. Write a commit record to the log 

  This is very similar to the notion of database transactions 64 



Journaling FS Recovery 
  What happens when the system crashes? 

  Filesystem data has not actually been modified, just the log! 
  So, the FS itself reflects only what happened before the crash 

  Periodically synchronize the log with the filesystem data 
  Called a checkpoint 
  Ensures that the FS data reflects all of the changes in the log 

  No need to scan the entire filesystem after a crash... 
  Only need to look at the log entries since the last checkpoint! 

  For each log entry, see if the commit record is there 
  If not, consider the changes incomplete, and don't try to make 

them 
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Journaling FS Example 
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Journaling FS Example 
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Journaling FS Example 

  Filesystem reflects changes up to last checkpoint 
  Fsck scans changelog from last checkpoint forward 
  Doesn't find a commit record ... changes are simply 

ignored 68 
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Bonus: NFS 



More recent filesystems 

  How can we share filesystems over a 
network? 
  NFS, SAN, NAS, Hadoop 

  How can we make a filesystem resilient to 
failures? 
  RAID (covered in earlier slides) 
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Networked File System (NFS) 
  NFS allows a system to access files over a 

network 
  One of many distributed file systems 
  Extremely successful and widely used 

  You use NFS on all your shared files in the lab 
machines 
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Networked File System (NFS) 
  Development of LANs made it really attractive to provide shared file 

systems to all machines on a network 
  Login to any machine and see the same set of files 
  Install software on a single server that all machines can run 
  Let users collaborate on shared set of files (before CVS) 

  Why might this be hard to do? 
  Clients and servers might be running different OS 
  Clients and servers might be using different CPU architecture with 

differing byte ordering (endianess) 
  Client or server might crash independently of each other 

  Must be easy to recover from crashes 

  Potentially very large number of client machines on a network 
  Different users might be trying to modify a shared file at the same time 
  Transparency: Allow user programs to access remote files just like local 

files 
  No special libraries, recompilation, etc. 
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NFS Overview 
  NFS was developed by Sun Microsystems in the mid-80s 

  Networked machines at the time were predominantly UNIX-based workstations 
  Various vendors: Sun, DEC, IBM, etc. 
  Different CPU architectures and OS implementations 

  But, all used UNIX filesystem structure and semantics 

  NFS is based on Remote Procedure Call (RPC) 
  Allows a client machine to invoke a function on a server machine, over a network 
  Client sends a message with the function arguments 
  Server replies with a message with the return value. 

  External Data Representation (XDR) to represent data types 
  Canonical network representation for ints, longs, byte arrays, etc. 
  Clients and servers must translate parameters and return values of RPC calls into 

XDR before shipping on the network 
  Otherwise, a little-endian machine and a big-endian machine would disagree on 

what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int” 
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NFS Design 
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Stateless Protocol 
  The NFS protocol is stateless 

  The server maintains no information about individual clients! 
  This means that NFS does not support any notion of “opening” or 
“closing” files 

  Each client simply issues read and write requests specifying the file, offset 
in the file, and the requested size 

  Advantages: 
  Server doesn't need to keep track of open/close status of files 
  Server doesn't need to keep track of “file offset” for each client's open 

files 
  Clients do this themselves 

  Server doesn't have to do anything to recover from a crash! 
  Clients simply retry NFS operations until the server comes back up 

  Disadvantages: 
  Server doesn't keep track of concurrent access to same file 
  Multiple clients might be modifying a file at the same time 

  NFS does not provide any consistency guarantees!!! 

  However, there is a separate locking protocol – discussed later 75 



NFS Protocol Overview 
  mount() returns filehandle for root of filesystem 

  Actually a separate protocol from NFS... 

  lookup(dir-handle, filename) returns filehandle, attribs 
  Returns unique file handle for a given file 
  File handle used in subsequent read/write/etc. calls 

  create(dir-handle, filename, attributes) returns filehandle 
  remove(dir-handle, filename) returns status 
  getattr(filehandle) returns attribs 

  Returns attributes of the file, e.g., permissions, owner, group ID, 
size, access time, last-modified time 

  setattr(filehandle, attribs) returns attribs 
  read(filehandle, offset, size) returns attribs, data 
  write(filehandle, offset, count, data) returns attribs 
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NFS Caching 

  NFS clients are responsible for caching recently-accessed data 
  Remember: the server is stateless! 

  The NFS protocol does not require that clients cache data ... 
  But, it provides support allowing a range of client-side caching techniques 

  This is accomplished through the getattr() call 
  Returns size, permissions, and last-modified time of file 
  This can tell a client whether a file has changed since it last read it 
  Read/write calls also return attributes so client can tell if object was 

modified since the last getattr() call 
  How often should the client use getattr()? 

  Whenever the file is accessed?  
  Could lead to a lot of getattr calls! 

  Only if the file has not been accessed for some time? 
  e.g., If the file has not been accessed in 30 sec? 

  Different OSs implement this differently! 
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NFS Locking 
  NFS does not prevent multiple clients from 

modifying a file simultaneously 
  Clearly, this can be a Bad Thing for some 

applications... 
  Solution: Network Lock Manager (NLM) 

protocol 
  Works alongside NFS to provide file locking 
  NFS itself does not know anything about locks 

  Clients have to use NLM “voluntarily” to avoid 
stomping on each other 

  NLM has to be stateful 
  Why? 78 



NLM Protocol 
  NLM server has to keep track of locks held by clients 
  If the NLM server crashes... 

  All locks are released! 
  BUT ... clients can reestablish locks during a “grace period” after the 

server recovers 
  No new locks are granted during the grace period 
  Server has to remember which locks were previously held by clients 

  If an NLM client crashes... 
  The server is notified when the client recovers and releases all of its locks 

  What happens if a client crashes and does not come back up for a while? 

  Servers and clients must be notified when they crash and 
recover 
  This is done with the simple “Network Status Monitor” (NSM) protocol 
  Essentially, send a notification to the other host when you reboot 
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NLM Example 
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Client A 

Client B 

Server 

“lock file foo, offset 0 len 512” 

“lock granted” 

“lock file foo, offset 0 len 512” 

“denied!” 

Client A, 
foo[0…512] 



NLM Example 
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Client A 

Client B 

Server 

Client A, 
foo[0…512] 



NLM Example 
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Client A 

Client B 

Server Restart notification 

Client A, 
foo[0…512] 



NLM Example 
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Client A 

Client B 

Server 

“relock file foo, offset 0 len 512” 

“lock granted” 

Client A, 
foo[0…512] 

check 


