
 
 

1 

Filesystems 

Based on slides by Matt Welsh, Harvard 



Announcements 
  MP8 due tomorrow night 
  Finals approaching, know your times and conflicts 

  Ours: Friday May 11,  1:30 – 4:30 pm 
  Review material similar to midterm released by Friday 

  Topic outline 
  Practice final exam 

  Review sessions 
  Vote on Piazza for times that work for you 
  Do this by midnight Tuesday; results announced Wed. 

  Honors section demos 
  Vote on Piazza for times that work for you 
  Do this by Wednesday 
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Filesystems 
  A filesystem provides a high-level application access to disk 

  As well as CD, DVD, tape, floppy, etc... 
  Masks the details of low-level sector-based I/O operations 
  Provides structured access to data (files and directories) 
  Caches recently-accessed data in memory 

  Hierarchical filesystems: Most common type 
  Organized as a tree of directories and files 

  Byte-oriented vs. record-oriented files 
  UNIX, Windows, etc. all provide byte-oriented file access 

  May read and write files a byte at a time 
  Many older OS's provided only record-oriented files 

  File composed of a set of records; may only read and write a record at a time 

  Versioning filesystems 
  Keep track of older versions of files 
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 

3 



Filesystem Operations 
  Filesystems provide a standard interface to files and directories: 

  Create a file or directory 
  Delete a file or directory 
  Open a file or directory – allows subsequent access 
  Read, write, append to file contents 
  Add or remove directory entries 
  Close a file or directory – terminates access 

  What other features do filesystems provide? 
  Accounting and quotas – prevent your classmates from hogging the disks 
  Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 
  Indexing and search capabilities 
  File versioning 
  Encryption 
  Automatic compression of infrequently-used files 

  Should this functionality be part of the filesystem or built on top? 
  Classic OS community debate: Where is the best place to put functionality? 
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Basic Filesystem Structures 
  Every file and directory is represented by an inode 

  Stands for “index node” 

  Contains two kinds of information: 
  1) Metadata describing the file's owner, access rights, etc. 
  2) Location of the file's blocks on disk 
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Directories 
  A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

  These are the contents of the directory “file data” itself – NOT the 
directory's inode! 

  Filenames (in UNIX) are not stored in the inode at all! 
  Two open questions: 

  How do we find the root directory (“ / “ on UNIX systems)? 
  How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 
  To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 
  All right, so directories tell us the inode number of a file. 

  How the heck do we find the inode itself on disk? 
  Basic idea: Top part of filesystem contains all of the inodes! 

  inode number is just the “index” of the inode 
  Easy to compute the block address of a given inode: 

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size) 

  This implies that a filesystem has a fixed number of potential inodes 
  This number is generally set when the filesystem is created 

  The superblock stores important metadata on filesystem layout, list of free 
blocks, etc. 
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Stupid directory tricks 
  Directories map filenames to inode numbers. What does this imply? 
  We can create multiple pointers to the same inode in different 

directories 
  Or even the same directory with different filenames 

  In UNIX this is called a “hard link” and can be done using “ln” 

bash$ ls -i /home/foo 
287663 /home/foo       (This is the inode number of “foo”) 
bash$ ln /home/foo /tmp/foo 
bash$ ls -i /home/foo /tmp/foo 
287663 /home/foo 
287663 /tmp/foo 
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk 
  Not a copy! You will always see identical data no matter which filename you 

use to read or write the file. 
  Note: This is not the same as a “symbolic link”, which only links one 

filename to another. 
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How should we organize blocks on a disk? 
  Very simple policy: A file consists of linked blocks 

  inode points to the first block of the file 
  Each block points to the next block in the file (just a linked list on disk) 

  What are the advantages and disadvantages?? 

  Indexed files 
  inode contains a list of block numbers containing the file 
  Array is allocated when the file is created 

  What are the advantages and disadvantages?? 
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Multilevel indexed files 
  inode contains a list of 10-15 direct block pointers 

  First few blocks of file can be referred to by the inode itself 

  inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks 
  Allows file to grow to be incredibly large!!! 
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File system caching 
  Most filesystems cache significant amounts of disk in 

memory 
  e.g., Linux tries to use all “free” physical memory as a giant cache 
  Avoids huge overhead for going to disk for every I/O 
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Caching issues 
  Where should the cache go? 

  Below the filesystem layer: Cache individual disk blocks 
  Above the filesystem layer: Cache entire files and directories 
  Which is better?? 
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Caching issues (2) 
  Reliability issues 

  What happens when you write to the cache but the system crashes? 
  What if you update some of the blocks on disk but not others? 

  Example: Update the inode on disk but not the data blocks? 
  Write-through cache: All writes immediately sent to disk 
  Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 
  Which is better for performance? For reliability? 
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Caching issues (2) 
  “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
  UNIX “sync” command achieves this. 
  Can also use fsync() system call to sync any blocks for a given file. 

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 
the disk! 

  This is also complicated by memory caching on the disk itself. 

  Crash recovery 
  If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 
  Example: an inode pointing to a block that is marked as free in the 

free block list 
  Another example: An inode with no directory entry pointing to it 

  These usually get linked into a “lost+found” directory  
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching and fsync() example 
  Running the copy example from last time, 

  How fast is it the first time, vs. the second time 
you copy the same file? 

  What happens if we fsync() after each 
iteration? 
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Caching issues (3) 
  Read ahead 

  Recall: Seek time dominates overhead of disk I/O 
  So, would ideally like to read multiple blocks into memory when 

you have a cache miss 
  Amortize the cost of the seek for multiple reads 

  Useful if file data is laid out in contiguous blocks on disk 
  Especially if the application is performing sequential access to the file 
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Making filesystems resilient: 
RAID 

Copyright ©: University of Illinois CS 
241 Staff 
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RAID Motivation 
  Speed of disks not matching other components 

  Moore’s law: CPU speed doubles every 18 months 
  SRAM speeds increasing by 40-100% a year 
  In contrast, disk seek time only improving 7% a year 

  Although greater density leads to improved transfer times once seek is done 

  Emergence of PCs starting to drive down costs of disks 
  (This is 1988 after all) 
  PC-class disks were smaller, cheaper, and only marginally slower 
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RAID Motivation 
  Basic idea: Build I/O systems as arrays of cheap 

disks 
  Allow data to be striped across multiple disks 
  Means you can read/write multiple disks in parallel – 

greatly improve performance 
  Problem: disks are extremely unreliable 
  Mean Time to Failure (MTTF) 

  MTTF (disk array) = MTTF (single disk) / # disks 
  Adding more disks means that failures happen more 

frequently.. 
  An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks for the array’s MTTF! 
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Increasing reliability 
  Idea: Replicate data across multiple disks 

  When a disk fails, lost information can be regenerated from the 
redundant data 

  Simplest form: Mirroring (also called “RAID 1”) 
  All data is mirrored across two disks 

  Advantages: 
  Reads are faster, since both disks can be read in parallel 
  Higher reliability (of course) 

  Disadvantages: 
  Writes are slightly slower, since OS must wait for both disks to do 

write 
  Doubles the cost of the storage system! 
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RAID 3 
  Rather than mirroring, use parity codes 

  Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an 
even number of “1” bits in the set {b1, b2, ..., bN, P} 

  Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P) 
to recover it. 

  Where to store the parity codes? 
  Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N disks 
  Advantages:  

  If a single disk fails, can easily recompute the lost data from the parity 
code 

  Can use one parity disk for several data disks (reduces cost) 

  Disadvantages: 
  Each write to a block must update the corresponding parity block as well 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 

  1. Read back data from other disks 
  2. Recalculate lost data from parity code 
  3. Rebuild data on lost disk 
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RAID 3 issues 
  Terminology 

  MTTF = mean time to failure 
  MTTR = mean time to repair 

  What is the MTTF of RAID? 
  Both RAID 1 and RAID 3 tolerate the failure of a single disk 
  As long as a second disk does not die while we are repairing the first 

failure, we are in good shape! 

  So, what is the probability of a second disk failure? 
  P(2nd failure) ≈ MTTR / (MTTF of one disk  / # disks -1) 

  Assumes independent, exponential failure rates; see Patterson RAID paper for derivation 

  10 disks, MTTF (disk) = 1000 days, MTTR = 1 day 
  P(2nd failure) ≈ 1 day / ( 1000 / 9 ) = 0.009 

  What is the performance of RAID 3? 
  Check disk must be updated each time there is a write 
  Problem: The check disk is then a performance bottleneck 

  Only a single read/write can be done at once on the whole system! 
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RAID 5 
  Another approach: Interleaved check blocks (“RAID 5”) 

  Rotate the assignment of data blocks and check blocks across 
disks 

  Avoids the bottleneck of a single disk for storing check data 
  Allows multiple reads/writes to occur in parallel (since different 

disks affected) 
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Reliable distributed storage 
  Today, giant data stores distributed across 100s of 

thousands of disks across the world 
  e.g., your mail on gmail 

  “You know you have a large storage system when you 
get paged at 1 AM because you only have a few 
petabytes of storage left.” 
  – a “note from the trenches” at Google 
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Reliable distributed storage 
  Issues 

  Failure is the common case 
  Google reports 2-10% of disks fail per year 
  Now multiply that by 60,000+ disks in a single warehouse... 

  Must survive failure of not just a disk, but a rack of servers or a 
whole data center 

  Solutions 
  Simple redundancy (2 or 3 copies of each file) 

  e.g., Google GFS (2001) 
  More efficient redundancy (analogous to RAID 3++) 

  e.g., Google Colossus filesystem (~2010): customizable 
replication including Reed-Solomon codes with 1.5x 
redundancy 

  More interesting tidbits: http://goo.gl/LwFIy 

32 



Today only! 
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Bonus: Atomic write failures in 
RAID (not on exam) 



Atomic Write Failure 
  Many applications perform “update in 

place” 
  They change a file on disk by overwriting it with 

a new version 
  What happens with RAID? 
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Atomic Write Failure 
  But is the complete write to all disks really 

atomic? 
  Generally, no! 
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Atomic Write Failure 
  But is the complete write to all disks really atomic? 

  Generally, no! 

  What does this mean? 
  Data can be left in an inconsistent state across the different disks! 
  Really hard to recover from this. 

  Problem: Most applications assume the storage system 
has atomic write semantics. 

  Possible fixes? 
  Use a journaling filesystem-like approach: Record changes to data 

objects transactionally. 
  Requires extensive changes to filesystem sitting on top of the RAID. 

  Battery-backed write cache: 
  RAID controller remembers all writes in a battery-backed cache 
  When recovery occurs, flush all writes out to the physical disks 
  Doesn't solve the problem in general but gives you some insurance. 
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Bonus: Modern Filesystem 
techniques (not on exam) 



Modern Filesystem Tricks 
  Extents 
  Pre-allocation 
  Delayed allocation (Block remapping) 
  Colocating inodes and directories 
  Soft metadata updates 
  Journaling 
  These tricks are used by many modern 

filesystems 
  E.g., ext3 and ext4 
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Extent-based transfers 
  One idea: a gap between sectors on a track 

  Try to take advantage of rotational latency for 
performing next read or write operation 

  Problem: Hurts performance for multi-sector I/
O! 

  Cannot achieve the full transfer rate of the disk 
for large, contiguous reads or writes. 

  Possible fix: Just get rid of the gap between 
sectors 
  Problem: “Dropped rotation” between 

consecutive reads or writes: have to wait for 
next sector to come around under the heads. 
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  Hybrid approach - “extents” [McVoy, USENIX'91] 
  Group blocks into “extents” or clusters of contiguous blocks 
  Try to do all I/O on extents rather than individual blocks 
  To avoid wasting I/O bandwidth, only do this when FS detects 

sequential access 
  Kind of like just increasing the block size... 



Block remapping 
  Problem: Block numbers are allocated when they 

are first written 
  FS maintains a free list of blocks and simply picks the 

first block off the list 
  No guarantee that these blocks will be contiguous for a large 

write! 

  A single file may end up with blocks scattered across 
the disk 

  Why can't we maintain the free list in some sorted 
order? 
  Problem: Interleaved writes to multiple files may end up 

causing each file to be discontiguous. 

41 



Block remapping 
  Idea: Delay determination of block address until cache is flushed 

  Hope that multiple block writes will accumulate in the cache 
  Can remap the block addresses for each file's writes to a contiguous set 

  This is kind of a hack, introduced “underneath” the FFS block allocation layer. 
  Meant fewer changes to the rest of the FFS code. 
  Sometimes building real systems means making these kinds of tradeoffs! 
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Colocating inodes and directories 
  Problem: Reading small files is slow. Why? 

  What happens when you try to read all files in a directory (e.g., “ls 
-l” or “grep foo *”) ? 

  Must first read directory. 
  Then read inode for each file. 
  Then read data pointed to by inode. 

  Solution: Embed the inodes in the directory itself! 
  Recall: Directory just a set of <name, inode #> values 
  Why not stuff inode contents in the directory file itself? 

  Problem #2: Must still seek to read contents of each file in 
the directory. 
  Solution: Pack all files in a directory in a contiguous set of blocks. 
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Synchronous metadata updates 
  Problem: Some updates to metadata 

require synchronous writes 
  Means the data has to “hit the disk” before 

anything else can be done. 
  Example #1: Creating a file 

  Must write the new file's inode to disk before 
the corresponding directory entry. 
  Why??? 

  Example #2: Deleting a file 
  Must clear out the directory entry before 

marking the inode as “free” 
  Why??? 44 
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Synchronous metadata updates 
  Say that ... 

  1) Both inodes are in the 
same disk block. 

  2) Both the file create 
and file delete have 
happened in the cache, 
but neither has hit the 
disk yet. 

  Given this, what order 
are we allowed to write 
the disk blocks out? 
  We have a cyclic 

dependency here!!! 
Arggghhhh .... 
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Solution: Soft Updates 
  Idea: Keep track of 

dependencies on a 
finer granularity 
  Rather than at a 

block level, do this at 
a “data structure 
level” 

  Example: Track 
dependencies on 
individual inodes or 
directory entries. 
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Soft Updates - Example 
  How to break the cyclic 

dependency? 
  “Roll back” one of the 

changes before writing the 
data out to disk! 

  When flushing inode block 
(Block 2) to disk... 
  Undo the file delete operation 

(as if it never happened!) 
  Write out the inode block 

(Block 2) – still contains B! 
  Then write out the directory 

block (Block 1) – still contains 
entry for B! 

  Then redo the file delete 
operation ... can now 
proceed. 48 



Log-structured Fileystems (LFS) 
  Around '91, two trends in disk technology were emerging: 

  Disk bandwidth was increasing rapidly (over 40% a year) 
  Seek latency not improving much at all 
  Machines had increasingly large main memories 

  Large buffer caches absorb a large fraction of read I/Os 

  Can use for writes as well! 
  Coalesce several small writes into one larger write 

  Some lingering problems with earlier filesystems... 
  Writing to file metadata (inodes) was required to be synchronous 

  Couldn't buffer metadata writes in memory 

  Lots of small writes to file metadata means lots of seeks! 

  LFS takes advantage of both to increase FS performance 
  Started as a grad-school research project at Berkeley 
  Mendel Rosenblum and John Ousterhout 
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LFS: The basic idea 
  Treat the entire disk as one big append-only log for writes! 

  Don't try to lay out blocks on disk in some predetermined order 
  Whenever a file write occurs, append it to the end of the log 
  Whenever file metadata changes, append it to the end of the log 

  Collect pending writes in memory and stream out in one 
big write 
  Maximizes disk bandwidth 
  No “extra” seeks required (only those to move the end of the log) 

  When do writes to the actual disk happen? 
  When a user calls sync() -- synchronize data on disk for whole 

filesystem 
  When a user calls fsync() -- synchronize data on disk for one file 
  When OS needs to reclaim dirty buffer cache pages 

  Note that this can often be avoided, eg., by preferring clean pages 

  Sounds simple ... 
  But lots of hairy details to deal with! 
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LFS Example 

  Just append every new write that happens 
to the end of the log 
  Writing a block in the middle of the file just 

appends that block to the end of the log 
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LFS and inodes 
  How do you locate file data? 

  Sequential scan of the log is probably a bad 
idea ... 

  Solution: Write the inodes to the tail of the 
log! (just like regular data) 
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LFS and inodes 
  How do you locate file data? 

  Sequential scan of the log is probably a bad 
idea ... 

  Solution: Use FFS-style inodes! 
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inode map (this is getting fun) 
  Well, now, how do you find the inodes?? 

  Could also be anywhere in the log! 

  Solution: inode maps 
  Maps “file number” to the location of its inode in the log 
  Note that inode map is also written to the log!!!! 
  Cache inode maps in memory for performance 
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Reading from LFS 
  But wait ... now file data is scattered all over 

the disk! 
  Seems to obviate all of the benefits of grouping 

data on common cylinders 
  Basic assumption: Buffer cache will handle 

most read traffic 
  Or at least, reads will happen to data roughly in 

the order in which it was written 
  Take advantage of huge system memories to 

cache the heck out of the FS! 
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Log cleaner 
  With LFS, eventually the disk will fill up! 

  Need some way to reclaim “dead space” 

  What constitutes “dead space?” 
  Deleted files 
  File blocks that have been “overwritten” 

  Solution: Periodic “log cleaning” 
  Scan the log and look for deleted or overwritten 

blocks 
  Effectively, clear out stale log entries 

  Copy live data to the end of the log 
  The rest of the log (at the beginning) can now be 

reused! 
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Log cleaning example 
  LFS cleaner breaks log into segments 

  Each segment is scanned by the cleaner 
  Live blocks from a segment are copied into a new segment 
  The entire scanned segment can then be reclaimed 

57 



Log cleaning example 
  LFS cleaner breaks log into segments 

  Each segment is scanned by the cleaner 
  Live blocks from a segment are copied into a new segment 
  The entire scanned segment can then be reclaimed 

58 



Log cleaning example 
  LFS cleaner breaks log into segments 

  Each segment is scanned by the cleaner 
  Live blocks from a segment are copied into a new segment 
  The entire scanned segment can then be reclaimed 

59 



Log cleaning example 
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Properties of LFS 
  Advantages 

  High write throughput 
  Few in-place writes 

  Some kinds of storage media have limited write/erase cycles per 
location (e.g., flash memory, CD-RW) 

  LFS prolongs life of media through write-leveling 

  Disadvantages 
  Increases file fragmentation, can harm performance on systems 

with high seek times 
  Less throughputs on flash memory, where write fragmentation has 

much less of an impact on write throughput 

  “Lies, damn lies, and benchmarks” 
  It is very difficult to come up with definitive benchmarks proving 

that one system is better than another 
  Can always find a scenario where one system design outperforms 

another 
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Filesystem corruption 
  What happens when you are making changes to a 

filesystem and the system crashes? 
  Example: Modifying block 5 of a large directory, adding lots of new 

file entries 
  System crashes while the block is being written 
  The new files are “lost!” 

  System runs fsck program on reboot 
  Scans through the entire filesystem and locates corrupted inodes 

and directories 
  Can typically find the bad directory, but may not be able to repair it! 
  The directory could have been left in any state during the write 

  fsck can take a very long time on large filesystems 
  And, no guarantees that it fixes the problems anyway 

62 



Journaling filesystems 
  Ensure that changes to the filesystem are 

made atomically 
  That is, a group of changes are made all 

together, or not at all 
  Example: creating a new file 

  Need to write both the inode for the new file 
and the directory entry “together” 

  Otherwise, if a crash happens between the two 
writes, either.. 
  1) Directory points to a file that does not exist 
  2) Or, file is on disk but not included in any directory 
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Journaling filesystems 
  Goal: Make updates to filesystems appear to be atomic 

  The directory either looks exactly as it did before the file was 
created 

  Or the directory looks exactly as it did after the file was created 
  Cannot leave an FS entity (data block, inode, directory, etc.) in an 

intermediate state! 

  Idea: Maintain a log of all changes to the filesystem 
  Log contains information on any operations performed to the 

filesystem state 
  e.g., “Directory 2841 had inodes 404, 407, and 408 added to it” 

  To make a filesystem change: 
  1. Write an intent-to-commit record to the log 
  2. Write the appropriate changes to the log 

  Do not modify the filesystem data directly!!! 

  3. Write a commit record to the log 

  This is very similar to the notion of database transactions 64 



Journaling FS Recovery 
  What happens when the system crashes? 

  Filesystem data has not actually been modified, just the log! 
  So, the FS itself reflects only what happened before the crash 

  Periodically synchronize the log with the filesystem data 
  Called a checkpoint 
  Ensures that the FS data reflects all of the changes in the log 

  No need to scan the entire filesystem after a crash... 
  Only need to look at the log entries since the last checkpoint! 

  For each log entry, see if the commit record is there 
  If not, consider the changes incomplete, and don't try to make 

them 
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Journaling FS Example 
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Journaling FS Example 
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Journaling FS Example 

  Filesystem reflects changes up to last checkpoint 
  Fsck scans changelog from last checkpoint forward 
  Doesn't find a commit record ... changes are simply 

ignored 68 
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Bonus: NFS 



More recent filesystems 

  How can we share filesystems over a 
network? 
  NFS, SAN, NAS, Hadoop 

  How can we make a filesystem resilient to 
failures? 
  RAID (covered in earlier slides) 
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Networked File System (NFS) 
  NFS allows a system to access files over a 

network 
  One of many distributed file systems 
  Extremely successful and widely used 

  You use NFS on all your shared files in the lab 
machines 
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Networked File System (NFS) 
  Development of LANs made it really attractive to provide shared file 

systems to all machines on a network 
  Login to any machine and see the same set of files 
  Install software on a single server that all machines can run 
  Let users collaborate on shared set of files (before CVS) 

  Why might this be hard to do? 
  Clients and servers might be running different OS 
  Clients and servers might be using different CPU architecture with 

differing byte ordering (endianess) 
  Client or server might crash independently of each other 

  Must be easy to recover from crashes 

  Potentially very large number of client machines on a network 
  Different users might be trying to modify a shared file at the same time 
  Transparency: Allow user programs to access remote files just like local 

files 
  No special libraries, recompilation, etc. 
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NFS Overview 
  NFS was developed by Sun Microsystems in the mid-80s 

  Networked machines at the time were predominantly UNIX-based workstations 
  Various vendors: Sun, DEC, IBM, etc. 
  Different CPU architectures and OS implementations 

  But, all used UNIX filesystem structure and semantics 

  NFS is based on Remote Procedure Call (RPC) 
  Allows a client machine to invoke a function on a server machine, over a network 
  Client sends a message with the function arguments 
  Server replies with a message with the return value. 

  External Data Representation (XDR) to represent data types 
  Canonical network representation for ints, longs, byte arrays, etc. 
  Clients and servers must translate parameters and return values of RPC calls into 

XDR before shipping on the network 
  Otherwise, a little-endian machine and a big-endian machine would disagree on 

what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int” 
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NFS Design 

74 



Stateless Protocol 
  The NFS protocol is stateless 

  The server maintains no information about individual clients! 
  This means that NFS does not support any notion of “opening” or 
“closing” files 

  Each client simply issues read and write requests specifying the file, offset 
in the file, and the requested size 

  Advantages: 
  Server doesn't need to keep track of open/close status of files 
  Server doesn't need to keep track of “file offset” for each client's open 

files 
  Clients do this themselves 

  Server doesn't have to do anything to recover from a crash! 
  Clients simply retry NFS operations until the server comes back up 

  Disadvantages: 
  Server doesn't keep track of concurrent access to same file 
  Multiple clients might be modifying a file at the same time 

  NFS does not provide any consistency guarantees!!! 

  However, there is a separate locking protocol – discussed later 75 



NFS Protocol Overview 
  mount() returns filehandle for root of filesystem 

  Actually a separate protocol from NFS... 

  lookup(dir-handle, filename) returns filehandle, attribs 
  Returns unique file handle for a given file 
  File handle used in subsequent read/write/etc. calls 

  create(dir-handle, filename, attributes) returns filehandle 
  remove(dir-handle, filename) returns status 
  getattr(filehandle) returns attribs 

  Returns attributes of the file, e.g., permissions, owner, group ID, 
size, access time, last-modified time 

  setattr(filehandle, attribs) returns attribs 
  read(filehandle, offset, size) returns attribs, data 
  write(filehandle, offset, count, data) returns attribs 
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NFS Caching 

  NFS clients are responsible for caching recently-accessed data 
  Remember: the server is stateless! 

  The NFS protocol does not require that clients cache data ... 
  But, it provides support allowing a range of client-side caching techniques 

  This is accomplished through the getattr() call 
  Returns size, permissions, and last-modified time of file 
  This can tell a client whether a file has changed since it last read it 
  Read/write calls also return attributes so client can tell if object was 

modified since the last getattr() call 
  How often should the client use getattr()? 

  Whenever the file is accessed?  
  Could lead to a lot of getattr calls! 

  Only if the file has not been accessed for some time? 
  e.g., If the file has not been accessed in 30 sec? 

  Different OSs implement this differently! 
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NFS Locking 
  NFS does not prevent multiple clients from 

modifying a file simultaneously 
  Clearly, this can be a Bad Thing for some 

applications... 
  Solution: Network Lock Manager (NLM) 

protocol 
  Works alongside NFS to provide file locking 
  NFS itself does not know anything about locks 

  Clients have to use NLM “voluntarily” to avoid 
stomping on each other 

  NLM has to be stateful 
  Why? 78 



NLM Protocol 
  NLM server has to keep track of locks held by clients 
  If the NLM server crashes... 

  All locks are released! 
  BUT ... clients can reestablish locks during a “grace period” after the 

server recovers 
  No new locks are granted during the grace period 
  Server has to remember which locks were previously held by clients 

  If an NLM client crashes... 
  The server is notified when the client recovers and releases all of its locks 

  What happens if a client crashes and does not come back up for a while? 

  Servers and clients must be notified when they crash and 
recover 
  This is done with the simple “Network Status Monitor” (NSM) protocol 
  Essentially, send a notification to the other host when you reboot 
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NLM Example 
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Client A 

Client B 

Server 

“lock file foo, offset 0 len 512” 

“lock granted” 

“lock file foo, offset 0 len 512” 

“denied!” 

Client A, 
foo[0…512] 
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Client A 

Client B 

Server 

Client A, 
foo[0…512] 
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Client A 

Client B 

Server Restart notification 

Client A, 
foo[0…512] 
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Client A 

Client B 

Server 

“relock file foo, offset 0 len 512” 

“lock granted” 

Client A, 
foo[0…512] 

check 


