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I/O and Filesystems 

Based on slides by Matt Welsh, Harvard 



Announcements 
  Post your web server URL on piazza! 

  Exam review postponed till special session after last 
class 

  Research talk today: Darko Kirovski, Microsoft Research 
 “Making optical media impossible to counterfeit” 
 2405 SC, 4:00 p.m. 
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Part 1: Disks 



A Disk Primer (Review) 
  Disks consist of one or more platters divided into tracks 

  Each platter may have one or two heads that perform read/write operations 
  Each track consists of multiple sectors 
  The set of sectors across all platters is a cylinder 
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Disks: messy & slow (Review) 
  Low-level interface for reading and writing sectors 

  Generally allow OS to read/write an entire sector at a 
time 

  No notion of “files” or “directories” – just raw sectors 
  So, what do you do if you need to write a single byte to 

a file? 
  Disk may have numerous bad blocks – OS may need to 

mask this from filesystem 
  Access times are still very slow 

  Disk seek times are around 10 ms 
  Although raw throughput has increased dramatically 

  Compare to several nanosec to access main memory 
  Requires careful scheduling of I/O requests 
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Disk I/O Scheduling 
  Given multiple outstanding I/O requests, what order to issue them? 
  FIFO: Just schedule each I/O in the order it arrives 

  What's wrong with this? Potentially lots of seek time! 
  SSTF: Shortest seek time first 

  Issue I/O with the nearest cylinder to the current one 
  Favors middle tracks: Head rarely moves to edges of disk 

  SCAN (or Elevator) Algorithm: 
  Head has a current direction and current cylinder 
  Sort I/Os according to the track # in the current direction of the head 
  If no more I/Os in the current direction, reverse direction 

  CSCAN Algorithm: 
  Always move in one direction, “wrap around” to beginning of disk when 

moving off the end 
  Idea: Reduce variance in seek times, avoid discriminating against the 

highest and lowest tracks 
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SCAN example 
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SCAN example 

  What is the overhead of the SCAN algorithm? 
  Count the total amount of seek time to service all I/O 

requests 
  I.e., count total number of track changes 

  In this case, 12 tracks in --> direction 
  15 tracks for long seek back 
  5 tracks in <-- direction 

  Total: 12+15+5 = 32 tracks 
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What about flash? 
  Non-volatile, solid state storage 

  No moving parts! 
  Fast access times (about 0.1 msec) 
  Can read and write individual bytes at a time 

  Limitations 
  Block erasure: However, must erase a whole “block” 

before writing to it 
  Read disturb: Reads can cause cells near the read 

cell to change 
  Solution: Periodically re-write blocks 

  Limited number of erase/write cycles 
  Most flash on the market today can withstand up to 1 million 

erase/write cycles 
  Flash Translation Layer (FTL): writes to a different cell each 

time to wear-level device, cache to avoid excessive writes 

  How does this affect how we design filesystems??? 
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Part 2: I/O 



Input and Output 
  A computer’s job is to process data 

  Computation (CPU, cache, and memory) 
  Move data into and out of a system (between I/O devices and 

memory) 

  Challenges with I/O devices 
  Different categories: storage, networking, displays, etc. 
  Large number of device drivers to support 
  Device drivers run in kernel mode and can crash systems 

  Goals of the OS 
  Provide a generic, consistent, convenient and reliable way to 
  access I/O devices 
  As device-independent as possible 
  Don’t hurt the performance capability of the I/O system too much 
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How does the CPU talk to devices? 
  Device controller: Circuit that enables devices to talk to the 

peripheral bus 
  Host adapter: Circuit that enables the computer to talk to 

the peripheral bus 
  Bus: Wires that transfer data between components inside 

computer 
  Device controller allows OS to specify simpler instructions 

to access data 
  Example: a disk controller 

  Translates “access sector 23” to “move head reader 1.672725272 
cm from edge of platter” 

  Disk controller “advertises” disk parameters to OS, hides internal 
disk geometry 

  Most modern hard drives have disk controller embedded as a chip 
on the physical device 
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Review: Computer Architecture 
  Compute hardware 

  CPU and caches 
  Chipset 
  Memory 

  I/O Hardware 
  I/O bus or interconnect 
  I/O controller or adaptor 
  I/O device 

  Two types of I/O 
  Programmed I/O (PIO) 

  CPU does the work of moving data 
  Direct Memory Access (DMA) 

  CPU offloads the work of moving data to DMA controller 22 



Programmed Input Device 
  Device controller 

  Status register 
  ready: tells if the host is done 
  busy: tells if the controller is done 
  int: interrupt 
  … 

  Data registers 
  A simple mouse design 

  When moved, put (X, Y) in mouse’s 
device controller’s data registers 

  Interrupt CPU 
  Input on an interrupt 

  CPU saves state of currently-executing 
program 

  Reads values in X, Y registers 
  Sets ready bit 
  Wakes up a process/thread or execute 

a piece of code to handle interrupt 
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Programmed Output Device 
  Device 

  Status registers (ready, busy, … ) 
  Data registers 

  Example 
  A serial output device 

  Perform an output 
  CPU: Poll the busy bit 
  Writes the data to data register(s) 
  Set ready bit 
  Controller sets busy bit and 

transfers data 
  Controller clears the busy bit 
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Direct Memory Access (DMA) 
  DMA controller or adaptor 

  Status register (ready, busy, interrupt, …) 
  DMA command register 
  DMA register (address, size) 
  DMA buffer 

  Host CPU initiates DMA 
  Device driver call (kernel mode) 
  Wait until DMA device is free 
  Initiate a DMA transaction 
  (command, memory address, size) 
  Block 

  Controller performs DMA 
  DMA data to device (size--; address++) 
  Interrupt on completion (size == 0) 

  Interrupt handler (on completion) 
  Wakeup the blocked process 
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Memory-mapped I/O 
  Use the same address bus to address both memory and 

I/O devices 
  The memory and registers of I/O devices are mapped 

to address values 
  Allows same CPU instructions to be used with regular 

memory and devices 
  I/O devices, memory controller, monitor address bus   

  Each responds to addresses they own 
  Orthogonal to DMA 

  May be used with, or without, DMA 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU busy waits for completion 

  Interrupt-driven I/O 
  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU continues operation until interrupt 

  Direct Memory Access (DMA) 
  Typically done with Interrupt-driven I/O 
  CPU asks DMA controller to perform device-to-memory transfer 
  DMA issues I/O command and transfers new item into memory 
  CPU module is interrupted after completion 

  Which is better, polling or interrupt-driven I/O? 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  Expensive for large transfers 
  Better for small, dedicated systems with 

infrequent I/O 

  Interrupt-driven  
  Overcomes CPU busy waiting 
  I/O module interrupts when ready: event driven 
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How Interrupts are implemented 
  CPU hardware has an interrupt report line that the 

CPU tests after executing every instruction  
  If a(ny) device raises an interrupt by setting interrupt 

report line 
  CPU catches the interrupt and saves the state of current running 

process into PCB 
  CPU dispatches/starts the interrupt handler  
  Interrupt handler determines cause, services the device and clears 

the interrupt report line 

  Other uses of interrupts: exceptions 
  Division by zero, wrong address  
  System calls (software interrupts/signals, trap)  
  Virtual memory paging 

29 



I/O Software Stack 
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Interrupt Handling 
  Save context (registers that hw hasn’t saved, PSW etc) 
  Mask interrupts if needed 
  Set up a context for interrupt service 
  Set up a stack for interrupt service 
  Acknowledge interrupt controller, perhaps enable it 
  Save entire context to PCB 
  Run the interrupt service 
  Unmask interrupts if needed 
  Possibly change the priority of the process 
  Run the scheduler 
  Then OS will set up context for next process, load registers 

and PSW, start running process … 
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Device Drivers 

  Manage the complexity and differences among specific types of 
devices (disk vs. mouse, different types of disks …) 

  Each handles one type of device or small class of them (eg SCSI) 
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Typical Device Driver Design 
  Operating system and driver communication 

  Commands and data between OS and device drivers 

  Driver and hardware communication 
  Commands and data between driver and hardware 

  Driver responsibilities 
  Initialize devices 
  Interpreting commands from OS 
  Schedule multiple outstanding requests 
  Manage data transfers 
  Accept and process interrupts 
  Maintain the integrity of driver and kernel data 

structures 
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Device Driver Behavior 
  Check input parameters for validity, and translate them to device 

specific language 
  Check if device is free (wait or block if not) 
  Issue commands to control device 

  Write them into device controller’s registers 
  Check after each if device is ready for next (wait or block if not) 

  Block or wait for controller to finish work 
  Check for errors, and pass data to device-independent software 
  Return status information 
  Process next queued request, or block waiting for next 
  Challenges: 

  Must be reentrant (can be called by an interrupt while running) 
  Handle hot-pluggable devices and device removal while running 
  Complex and many of them; bugs in them can crash system 
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Types of I/O Devices 
  Block devices 

  Organize data in fixed-size blocks 
  Transfers are in units of blocks 
  Blocks have addresses and data are therefore addressable 
  E.g. hard disks, USB disks, CD-ROMs 

  Character devices 
  Delivers or accepts a stream of characters, no block structure 
  Not addressable, no seeks 
  Can read from stream or write to stream 
  Printers, network interfaces, terminals 

  Like everything, not a perfect classification 
  E.g. tape drives have blocks but not randomly accessed 
  Clocks are I/O devices that just generate interrupts 
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User-level interfaces: syscalls 
  Character device interface 

  read( deviceNumber, bufferAddr, size ) 
  Reads “size” bytes from a byte stream device to “bufferAddr” 

  write( deviceNumber, bufferAddr, size ) 
  Write “size” bytes from “bufferAddr” to a byte stream device 

  Block device interface 
  read( deviceNumber, deviceAddr, bufferAddr ) 

  Transfer a block of data from “deviceAddr” to “bufferAddr” 

  write( deviceNumber, deviceAddr, bufferAddr ) 
  Transfer a block of data from “bufferAddr” to “deviceAddr” 

  seek( deviceNumber, deviceAddress ) 
  Move the head to the correct position 
  Usually not necessary 
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Sync vs Asynchronous I/O 
  Synchronous I/O 

  read() or write() will block a user process until its 
completion 

  OS overlaps synchronous I/O with another process 
  Asynchronous I/O 

  read() or write() will not block a user process 
  returns -1, sets error code EAGAIN or EWOULDBLOCK 

  user process can do other things before I/O 
completion 

  can determine if device is ready with select() / poll() 
  Make asynchronous with O_NONBLOCK option on 

open() or later via fcntl() 
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Example: Blocked Read 
  A process issues a read call which executes a system call 
  System call code checks for correctness 
  If it needs to perform I/O, it will issues a device driver call 
  Device driver allocates a buffer for read and schedules I/O 
  Controller performs DMA data transfer 
  Block the current process and schedule a ready process 
  Device generates an interrupt on completion 
  Interrupt handler stores any data and notifies completion 
  Move data from kernel buffer to user buffer 
  Wakeup blocked process (make it ready) 
  User process continues when it is scheduled to run 
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Does I/O overhead matter? 
  Many steps involved in transmitting data 
  How much can this overhead slow us 

down? 
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Part 2: Filesystems 



Filesystems 
  A filesystem provides a high-level application access to disk 

  As well as CD, DVD, tape, floppy, etc... 
  Masks the details of low-level sector-based I/O operations 
  Provides structured access to data (files and directories) 
  Caches recently-accessed data in memory 

  Hierarchical filesystems: Most common type 
  Organized as a tree of directories and files 

  Byte-oriented vs. record-oriented files 
  UNIX, Windows, etc. all provide byte-oriented file access 

  May read and write files a byte at a time 
  Many older OS's provided only record-oriented files 

  File composed of a set of records; may only read and write a record at a time 

  Versioning filesystems 
  Keep track of older versions of files 
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 
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Filesystem Operations 
  Filesystems provide a standard interface to files and directories: 

  Create a file or directory 
  Delete a file or directory 
  Open a file or directory – allows subsequent access 
  Read, write, append to file contents 
  Add or remove directory entries 
  Close a file or directory – terminates access 

  What other features do filesystems provide? 
  Accounting and quotas – prevent your classmates from hogging the disks 
  Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 
  Indexing and search capabilities 
  File versioning 
  Encryption 
  Automatic compression of infrequently-used files 

  Should this functionality be part of the filesystem or built on top? 
  Classic OS community debate: Where is the best place to put 

functionality? 
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Basic Filesystem Structures 
  Every file and directory is represented by an inode 

  Stands for “index node” 

  Contains two kinds of information: 
  1) Metadata describing the file's owner, access rights, etc. 
  2) Location of the file's blocks on disk 
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Directories 
  A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

  These are the contents of the directory “file data” itself – NOT the 
directory's inode! 

  Filenames (in UNIX) are not stored in the inode at all! 
  Two open questions: 

  How do we find the root directory (“ / “ on UNIX systems)? 
  How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 
  To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 
  All right, so directories tell us the inode number of a file. 

  How the heck do we find the inode itself on disk? 
  Basic idea: Top part of filesystem contains all of the inodes! 

  inode number is just the “index” of the inode 
  Easy to compute the block address of a given inode: 

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size) 

  This implies that a filesystem has a fixed number of potential inodes 
  This number is generally set when the filesystem is created 

  The superblock stores important metadata on filesystem layout, list of free 
blocks, etc. 
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Stupid directory tricks 
  Directories map filenames to inode numbers. What does this imply? 
  We can create multiple pointers to the same inode in different 

directories 
  Or even the same directory with different filenames 

  In UNIX this is called a “hard link” and can be done using “ln” 

bash$ ls -i /home/foo 
287663 /home/foo       (This is the inode number of “foo”) 
bash$ ln /home/foo /tmp/foo 
bash$ ls -i /home/foo /tmp/foo 
287663 /home/foo 
287663 /tmp/foo 
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk 
  Not a copy! You will always see identical data no matter which filename you 

use to read or write the file. 
  Note: This is not the same as a “symbolic link”, which only links one 

filename to another. 
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How should we organize blocks on a disk? 
  Very simple policy: A file consists of linked blocks 

  inode points to the first block of the file 
  Each block points to the next block in the file (just a linked list on disk) 

  What are the advantages and disadvantages?? 

  Indexed files 
  inode contains a list of block numbers containing the file 
  Array is allocated when the file is created 

  What are the advantages and disadvantages?? 
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Multilevel indexed files 
  inode contains a list of 10-15 direct block pointers 

  First few blocks of file can be referred to by the inode itself 

  inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks 
  Allows file to grow to be incredibly large!!! 
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File system caching 
  Most filesystems cache significant amounts of disk in 

memory 
  e.g., Linux tries to use all “free” physical memory as a giant cache 
  Avoids huge overhead for going to disk for every I/O 
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Caching issues 
  Where should the cache go? 

  Below the filesystem layer: Cache individual disk blocks 
  Above the filesystem layer: Cache entire files and directories 
  Which is better?? 
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Caching issues (2) 
  Reliability issues 

  What happens when you write to the cache but the system crashes? 
  What if you update some of the blocks on disk but not others? 

  Example: Update the inode on disk but not the data blocks? 
  Write-through cache: All writes immediately sent to disk 
  Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 
  Which is better for performance? For reliability? 
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Caching issues (2) 
  “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
  UNIX “sync” command achieves this. 
  Can also use fsync() system call to sync any blocks for a given file. 

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 
the disk! 

  This is also complicated by memory caching on the disk itself. 

  Crash recovery 
  If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 
  Example: an inode pointing to a block that is marked as free in the 

free block list 
  Another example: An inode with no directory entry pointing to it 

  These usually get linked into a “lost+found” directory  
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching issues (3) 
  Read ahead 

  Recall: Seek time dominates overhead of disk I/O 
  So, would ideally like to read multiple blocks into memory when 

you have a cache miss 
  Amortize the cost of the seek for multiple reads 

  Useful if file data is laid out in contiguous blocks on disk 
  Especially if the application is performing sequential access to the file 
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