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I/O and Filesystems 

Based on slides by Matt Welsh, Harvard 



Announcements 
  Post your web server URL on piazza! 

  Exam review postponed till special session after last 
class 

  Research talk today: Darko Kirovski, Microsoft Research 
 “Making optical media impossible to counterfeit” 
 2405 SC, 4:00 p.m. 
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Part 1: Disks 



A Disk Primer (Review) 
  Disks consist of one or more platters divided into tracks 

  Each platter may have one or two heads that perform read/write operations 
  Each track consists of multiple sectors 
  The set of sectors across all platters is a cylinder 
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Disks: messy & slow (Review) 
  Low-level interface for reading and writing sectors 

  Generally allow OS to read/write an entire sector at a 
time 

  No notion of “files” or “directories” – just raw sectors 
  So, what do you do if you need to write a single byte to 

a file? 
  Disk may have numerous bad blocks – OS may need to 

mask this from filesystem 
  Access times are still very slow 

  Disk seek times are around 10 ms 
  Although raw throughput has increased dramatically 

  Compare to several nanosec to access main memory 
  Requires careful scheduling of I/O requests 
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Disk I/O Scheduling 
  Given multiple outstanding I/O requests, what order to issue them? 
  FIFO: Just schedule each I/O in the order it arrives 

  What's wrong with this? Potentially lots of seek time! 
  SSTF: Shortest seek time first 

  Issue I/O with the nearest cylinder to the current one 
  Favors middle tracks: Head rarely moves to edges of disk 

  SCAN (or Elevator) Algorithm: 
  Head has a current direction and current cylinder 
  Sort I/Os according to the track # in the current direction of the head 
  If no more I/Os in the current direction, reverse direction 

  CSCAN Algorithm: 
  Always move in one direction, “wrap around” to beginning of disk when 

moving off the end 
  Idea: Reduce variance in seek times, avoid discriminating against the 

highest and lowest tracks 
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SCAN example 
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SCAN example 

  What is the overhead of the SCAN algorithm? 
  Count the total amount of seek time to service all I/O 

requests 
  I.e., count total number of track changes 

  In this case, 12 tracks in --> direction 
  15 tracks for long seek back 
  5 tracks in <-- direction 

  Total: 12+15+5 = 32 tracks 
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What about flash? 
  Non-volatile, solid state storage 

  No moving parts! 
  Fast access times (about 0.1 msec) 
  Can read and write individual bytes at a time 

  Limitations 
  Block erasure: However, must erase a whole “block” 

before writing to it 
  Read disturb: Reads can cause cells near the read 

cell to change 
  Solution: Periodically re-write blocks 

  Limited number of erase/write cycles 
  Most flash on the market today can withstand up to 1 million 

erase/write cycles 
  Flash Translation Layer (FTL): writes to a different cell each 

time to wear-level device, cache to avoid excessive writes 

  How does this affect how we design filesystems??? 
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Part 2: I/O 



Input and Output 
  A computer’s job is to process data 

  Computation (CPU, cache, and memory) 
  Move data into and out of a system (between I/O devices and 

memory) 

  Challenges with I/O devices 
  Different categories: storage, networking, displays, etc. 
  Large number of device drivers to support 
  Device drivers run in kernel mode and can crash systems 

  Goals of the OS 
  Provide a generic, consistent, convenient and reliable way to 
  access I/O devices 
  As device-independent as possible 
  Don’t hurt the performance capability of the I/O system too much 
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How does the CPU talk to devices? 
  Device controller: Circuit that enables devices to talk to the 

peripheral bus 
  Host adapter: Circuit that enables the computer to talk to 

the peripheral bus 
  Bus: Wires that transfer data between components inside 

computer 
  Device controller allows OS to specify simpler instructions 

to access data 
  Example: a disk controller 

  Translates “access sector 23” to “move head reader 1.672725272 
cm from edge of platter” 

  Disk controller “advertises” disk parameters to OS, hides internal 
disk geometry 

  Most modern hard drives have disk controller embedded as a chip 
on the physical device 
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Review: Computer Architecture 
  Compute hardware 

  CPU and caches 
  Chipset 
  Memory 

  I/O Hardware 
  I/O bus or interconnect 
  I/O controller or adaptor 
  I/O device 

  Two types of I/O 
  Programmed I/O (PIO) 

  CPU does the work of moving data 
  Direct Memory Access (DMA) 

  CPU offloads the work of moving data to DMA controller 22 



Programmed Input Device 
  Device controller 

  Status register 
  ready: tells if the host is done 
  busy: tells if the controller is done 
  int: interrupt 
  … 

  Data registers 
  A simple mouse design 

  When moved, put (X, Y) in mouse’s 
device controller’s data registers 

  Interrupt CPU 
  Input on an interrupt 

  CPU saves state of currently-executing 
program 

  Reads values in X, Y registers 
  Sets ready bit 
  Wakes up a process/thread or execute 

a piece of code to handle interrupt 
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Programmed Output Device 
  Device 

  Status registers (ready, busy, … ) 
  Data registers 

  Example 
  A serial output device 

  Perform an output 
  CPU: Poll the busy bit 
  Writes the data to data register(s) 
  Set ready bit 
  Controller sets busy bit and 

transfers data 
  Controller clears the busy bit 
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Direct Memory Access (DMA) 
  DMA controller or adaptor 

  Status register (ready, busy, interrupt, …) 
  DMA command register 
  DMA register (address, size) 
  DMA buffer 

  Host CPU initiates DMA 
  Device driver call (kernel mode) 
  Wait until DMA device is free 
  Initiate a DMA transaction 
  (command, memory address, size) 
  Block 

  Controller performs DMA 
  DMA data to device (size--; address++) 
  Interrupt on completion (size == 0) 

  Interrupt handler (on completion) 
  Wakeup the blocked process 
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Memory-mapped I/O 
  Use the same address bus to address both memory and 

I/O devices 
  The memory and registers of I/O devices are mapped 

to address values 
  Allows same CPU instructions to be used with regular 

memory and devices 
  I/O devices, memory controller, monitor address bus   

  Each responds to addresses they own 
  Orthogonal to DMA 

  May be used with, or without, DMA 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU busy waits for completion 

  Interrupt-driven I/O 
  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU continues operation until interrupt 

  Direct Memory Access (DMA) 
  Typically done with Interrupt-driven I/O 
  CPU asks DMA controller to perform device-to-memory transfer 
  DMA issues I/O command and transfers new item into memory 
  CPU module is interrupted after completion 

  Which is better, polling or interrupt-driven I/O? 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  Expensive for large transfers 
  Better for small, dedicated systems with 

infrequent I/O 

  Interrupt-driven  
  Overcomes CPU busy waiting 
  I/O module interrupts when ready: event driven 
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How Interrupts are implemented 
  CPU hardware has an interrupt report line that the 

CPU tests after executing every instruction  
  If a(ny) device raises an interrupt by setting interrupt 

report line 
  CPU catches the interrupt and saves the state of current running 

process into PCB 
  CPU dispatches/starts the interrupt handler  
  Interrupt handler determines cause, services the device and clears 

the interrupt report line 

  Other uses of interrupts: exceptions 
  Division by zero, wrong address  
  System calls (software interrupts/signals, trap)  
  Virtual memory paging 
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I/O Software Stack 
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Interrupt Handling 
  Save context (registers that hw hasn’t saved, PSW etc) 
  Mask interrupts if needed 
  Set up a context for interrupt service 
  Set up a stack for interrupt service 
  Acknowledge interrupt controller, perhaps enable it 
  Save entire context to PCB 
  Run the interrupt service 
  Unmask interrupts if needed 
  Possibly change the priority of the process 
  Run the scheduler 
  Then OS will set up context for next process, load registers 

and PSW, start running process … 
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Device Drivers 

  Manage the complexity and differences among specific types of 
devices (disk vs. mouse, different types of disks …) 

  Each handles one type of device or small class of them (eg SCSI) 
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Typical Device Driver Design 
  Operating system and driver communication 

  Commands and data between OS and device drivers 

  Driver and hardware communication 
  Commands and data between driver and hardware 

  Driver responsibilities 
  Initialize devices 
  Interpreting commands from OS 
  Schedule multiple outstanding requests 
  Manage data transfers 
  Accept and process interrupts 
  Maintain the integrity of driver and kernel data 

structures 
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Device Driver Behavior 
  Check input parameters for validity, and translate them to device 

specific language 
  Check if device is free (wait or block if not) 
  Issue commands to control device 

  Write them into device controller’s registers 
  Check after each if device is ready for next (wait or block if not) 

  Block or wait for controller to finish work 
  Check for errors, and pass data to device-independent software 
  Return status information 
  Process next queued request, or block waiting for next 
  Challenges: 

  Must be reentrant (can be called by an interrupt while running) 
  Handle hot-pluggable devices and device removal while running 
  Complex and many of them; bugs in them can crash system 
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Types of I/O Devices 
  Block devices 

  Organize data in fixed-size blocks 
  Transfers are in units of blocks 
  Blocks have addresses and data are therefore addressable 
  E.g. hard disks, USB disks, CD-ROMs 

  Character devices 
  Delivers or accepts a stream of characters, no block structure 
  Not addressable, no seeks 
  Can read from stream or write to stream 
  Printers, network interfaces, terminals 

  Like everything, not a perfect classification 
  E.g. tape drives have blocks but not randomly accessed 
  Clocks are I/O devices that just generate interrupts 
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User-level interfaces: syscalls 
  Character device interface 

  read( deviceNumber, bufferAddr, size ) 
  Reads “size” bytes from a byte stream device to “bufferAddr” 

  write( deviceNumber, bufferAddr, size ) 
  Write “size” bytes from “bufferAddr” to a byte stream device 

  Block device interface 
  read( deviceNumber, deviceAddr, bufferAddr ) 

  Transfer a block of data from “deviceAddr” to “bufferAddr” 

  write( deviceNumber, deviceAddr, bufferAddr ) 
  Transfer a block of data from “bufferAddr” to “deviceAddr” 

  seek( deviceNumber, deviceAddress ) 
  Move the head to the correct position 
  Usually not necessary 
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Sync vs Asynchronous I/O 
  Synchronous I/O 

  read() or write() will block a user process until its 
completion 

  OS overlaps synchronous I/O with another process 
  Asynchronous I/O 

  read() or write() will not block a user process 
  returns -1, sets error code EAGAIN or EWOULDBLOCK 

  user process can do other things before I/O 
completion 

  can determine if device is ready with select() / poll() 
  Make asynchronous with O_NONBLOCK option on 

open() or later via fcntl() 
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Example: Blocked Read 
  A process issues a read call which executes a system call 
  System call code checks for correctness 
  If it needs to perform I/O, it will issues a device driver call 
  Device driver allocates a buffer for read and schedules I/O 
  Controller performs DMA data transfer 
  Block the current process and schedule a ready process 
  Device generates an interrupt on completion 
  Interrupt handler stores any data and notifies completion 
  Move data from kernel buffer to user buffer 
  Wakeup blocked process (make it ready) 
  User process continues when it is scheduled to run 
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Does I/O overhead matter? 
  Many steps involved in transmitting data 
  How much can this overhead slow us 

down? 
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Part 2: Filesystems 



Filesystems 
  A filesystem provides a high-level application access to disk 

  As well as CD, DVD, tape, floppy, etc... 
  Masks the details of low-level sector-based I/O operations 
  Provides structured access to data (files and directories) 
  Caches recently-accessed data in memory 

  Hierarchical filesystems: Most common type 
  Organized as a tree of directories and files 

  Byte-oriented vs. record-oriented files 
  UNIX, Windows, etc. all provide byte-oriented file access 

  May read and write files a byte at a time 
  Many older OS's provided only record-oriented files 

  File composed of a set of records; may only read and write a record at a time 

  Versioning filesystems 
  Keep track of older versions of files 
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 
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Filesystem Operations 
  Filesystems provide a standard interface to files and directories: 

  Create a file or directory 
  Delete a file or directory 
  Open a file or directory – allows subsequent access 
  Read, write, append to file contents 
  Add or remove directory entries 
  Close a file or directory – terminates access 

  What other features do filesystems provide? 
  Accounting and quotas – prevent your classmates from hogging the disks 
  Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 
  Indexing and search capabilities 
  File versioning 
  Encryption 
  Automatic compression of infrequently-used files 

  Should this functionality be part of the filesystem or built on top? 
  Classic OS community debate: Where is the best place to put 

functionality? 
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Basic Filesystem Structures 
  Every file and directory is represented by an inode 

  Stands for “index node” 

  Contains two kinds of information: 
  1) Metadata describing the file's owner, access rights, etc. 
  2) Location of the file's blocks on disk 
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Directories 
  A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

  These are the contents of the directory “file data” itself – NOT the 
directory's inode! 

  Filenames (in UNIX) are not stored in the inode at all! 
  Two open questions: 

  How do we find the root directory (“ / “ on UNIX systems)? 
  How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 
  To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 
  All right, so directories tell us the inode number of a file. 

  How the heck do we find the inode itself on disk? 
  Basic idea: Top part of filesystem contains all of the inodes! 

  inode number is just the “index” of the inode 
  Easy to compute the block address of a given inode: 

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size) 

  This implies that a filesystem has a fixed number of potential inodes 
  This number is generally set when the filesystem is created 

  The superblock stores important metadata on filesystem layout, list of free 
blocks, etc. 
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Stupid directory tricks 
  Directories map filenames to inode numbers. What does this imply? 
  We can create multiple pointers to the same inode in different 

directories 
  Or even the same directory with different filenames 

  In UNIX this is called a “hard link” and can be done using “ln” 

bash$ ls -i /home/foo 
287663 /home/foo       (This is the inode number of “foo”) 
bash$ ln /home/foo /tmp/foo 
bash$ ls -i /home/foo /tmp/foo 
287663 /home/foo 
287663 /tmp/foo 
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk 
  Not a copy! You will always see identical data no matter which filename you 

use to read or write the file. 
  Note: This is not the same as a “symbolic link”, which only links one 

filename to another. 
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How should we organize blocks on a disk? 
  Very simple policy: A file consists of linked blocks 

  inode points to the first block of the file 
  Each block points to the next block in the file (just a linked list on disk) 

  What are the advantages and disadvantages?? 

  Indexed files 
  inode contains a list of block numbers containing the file 
  Array is allocated when the file is created 

  What are the advantages and disadvantages?? 
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Multilevel indexed files 
  inode contains a list of 10-15 direct block pointers 

  First few blocks of file can be referred to by the inode itself 

  inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks 
  Allows file to grow to be incredibly large!!! 
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File system caching 
  Most filesystems cache significant amounts of disk in 

memory 
  e.g., Linux tries to use all “free” physical memory as a giant cache 
  Avoids huge overhead for going to disk for every I/O 
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Caching issues 
  Where should the cache go? 

  Below the filesystem layer: Cache individual disk blocks 
  Above the filesystem layer: Cache entire files and directories 
  Which is better?? 
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Caching issues 
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  Below the filesystem layer: Cache individual disk blocks 
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Caching issues (2) 
  Reliability issues 

  What happens when you write to the cache but the system crashes? 
  What if you update some of the blocks on disk but not others? 

  Example: Update the inode on disk but not the data blocks? 
  Write-through cache: All writes immediately sent to disk 
  Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 
  Which is better for performance? For reliability? 
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Caching issues (2) 
  “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
  UNIX “sync” command achieves this. 
  Can also use fsync() system call to sync any blocks for a given file. 

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 
the disk! 

  This is also complicated by memory caching on the disk itself. 

  Crash recovery 
  If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 
  Example: an inode pointing to a block that is marked as free in the 

free block list 
  Another example: An inode with no directory entry pointing to it 

  These usually get linked into a “lost+found” directory  
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching issues (3) 
  Read ahead 

  Recall: Seek time dominates overhead of disk I/O 
  So, would ideally like to read multiple blocks into memory when 

you have a cache miss 
  Amortize the cost of the seek for multiple reads 

  Useful if file data is laid out in contiguous blocks on disk 
  Especially if the application is performing sequential access to the file 
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