

1

I/O and Filesystems

Based on slides by Matt Welsh, Harvard

Announcements
  Post your web server URL on piazza!

  Exam review postponed till special session after last
class

  Research talk today: Darko Kirovski, Microsoft Research
 “Making optical media impossible to counterfeit”
 2405 SC, 4:00 p.m.

2

3

Part 1: Disks

A Disk Primer (Review)
  Disks consist of one or more platters divided into tracks

  Each platter may have one or two heads that perform read/write operations
  Each track consists of multiple sectors
  The set of sectors across all platters is a cylinder

4

Disks: messy & slow (Review)
  Low-level interface for reading and writing sectors

  Generally allow OS to read/write an entire sector at a
time

  No notion of “files” or “directories” – just raw sectors
  So, what do you do if you need to write a single byte to

a file?
  Disk may have numerous bad blocks – OS may need to

mask this from filesystem
  Access times are still very slow

  Disk seek times are around 10 ms
  Although raw throughput has increased dramatically

  Compare to several nanosec to access main memory
  Requires careful scheduling of I/O requests

5

Disk I/O Scheduling
  Given multiple outstanding I/O requests, what order to issue them?
  FIFO: Just schedule each I/O in the order it arrives

  What's wrong with this? Potentially lots of seek time!
  SSTF: Shortest seek time first

  Issue I/O with the nearest cylinder to the current one
  Favors middle tracks: Head rarely moves to edges of disk

  SCAN (or Elevator) Algorithm:
  Head has a current direction and current cylinder
  Sort I/Os according to the track # in the current direction of the head
  If no more I/Os in the current direction, reverse direction

  CSCAN Algorithm:
  Always move in one direction, “wrap around” to beginning of disk when

moving off the end
  Idea: Reduce variance in seek times, avoid discriminating against the

highest and lowest tracks

6

SCAN example

7

Current track

Direction

SCAN example

8

Current track

Direction

SCAN example

9

Current track

Direction

SCAN example

10

Current track

Direction

SCAN example

11

Current track

Direction

SCAN example

12

Current track

Direction

SCAN example

13

Current track

Direction

SCAN example

14

Current track

Direction

SCAN example

15

Current track

Direction

SCAN example

16

Current track

Direction

SCAN example

  What is the overhead of the SCAN algorithm?
  Count the total amount of seek time to service all I/O

requests
  I.e., count total number of track changes

  In this case, 12 tracks in --> direction
  15 tracks for long seek back
  5 tracks in <-- direction

  Total: 12+15+5 = 32 tracks
17

Current track

Direction

What about flash?
  Non-volatile, solid state storage

  No moving parts!
  Fast access times (about 0.1 msec)
  Can read and write individual bytes at a time

  Limitations
  Block erasure: However, must erase a whole “block”

before writing to it
  Read disturb: Reads can cause cells near the read

cell to change
  Solution: Periodically re-write blocks

  Limited number of erase/write cycles
  Most flash on the market today can withstand up to 1 million

erase/write cycles
  Flash Translation Layer (FTL): writes to a different cell each

time to wear-level device, cache to avoid excessive writes

  How does this affect how we design filesystems???

18

19

Part 2: I/O

Input and Output
  A computer’s job is to process data

  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices and

memory)

  Challenges with I/O devices
  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to
  access I/O devices
  As device-independent as possible
  Don’t hurt the performance capability of the I/O system too much

20

How does the CPU talk to devices?
  Device controller: Circuit that enables devices to talk to the

peripheral bus
  Host adapter: Circuit that enables the computer to talk to

the peripheral bus
  Bus: Wires that transfer data between components inside

computer
  Device controller allows OS to specify simpler instructions

to access data
  Example: a disk controller

  Translates “access sector 23” to “move head reader 1.672725272
cm from edge of platter”

  Disk controller “advertises” disk parameters to OS, hides internal
disk geometry

  Most modern hard drives have disk controller embedded as a chip
on the physical device

21

Review: Computer Architecture
  Compute hardware

  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O
  Programmed I/O (PIO)

  CPU does the work of moving data
  Direct Memory Access (DMA)

  CPU offloads the work of moving data to DMA controller 22

Programmed Input Device
  Device controller

  Status register
  ready: tells if the host is done
  busy: tells if the controller is done
  int: interrupt
  …

  Data registers
  A simple mouse design

  When moved, put (X, Y) in mouse’s
device controller’s data registers

  Interrupt CPU
  Input on an interrupt

  CPU saves state of currently-executing
program

  Reads values in X, Y registers
  Sets ready bit
  Wakes up a process/thread or execute

a piece of code to handle interrupt
23

Programmed Output Device
  Device

  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  CPU: Poll the busy bit
  Writes the data to data register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the busy bit

24

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register (ready, busy, interrupt, …)
  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction
  (command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device (size--; address++)
  Interrupt on completion (size == 0)

  Interrupt handler (on completion)
  Wakeup the blocked process

25

Memory-mapped I/O
  Use the same address bus to address both memory and

I/O devices
  The memory and registers of I/O devices are mapped

to address values
  Allows same CPU instructions to be used with regular

memory and devices
  I/O devices, memory controller, monitor address bus

  Each responds to addresses they own
  Orthogonal to DMA

  May be used with, or without, DMA

26

Polling- vs. Interrupt-driven I/O
  Polling

  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU busy waits for completion

  Interrupt-driven I/O
  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU continues operation until interrupt

  Direct Memory Access (DMA)
  Typically done with Interrupt-driven I/O
  CPU asks DMA controller to perform device-to-memory transfer
  DMA issues I/O command and transfers new item into memory
  CPU module is interrupted after completion

  Which is better, polling or interrupt-driven I/O?
27

Polling- vs. Interrupt-driven I/O
  Polling

  Expensive for large transfers
  Better for small, dedicated systems with

infrequent I/O

  Interrupt-driven
  Overcomes CPU busy waiting
  I/O module interrupts when ready: event driven

28

How Interrupts are implemented
  CPU hardware has an interrupt report line that the

CPU tests after executing every instruction
  If a(ny) device raises an interrupt by setting interrupt

report line
  CPU catches the interrupt and saves the state of current running

process into PCB
  CPU dispatches/starts the interrupt handler
  Interrupt handler determines cause, services the device and clears

the interrupt report line

  Other uses of interrupts: exceptions
  Division by zero, wrong address
  System calls (software interrupts/signals, trap)
  Virtual memory paging

29

I/O Software Stack

30

Interrupt Handling
  Save context (registers that hw hasn’t saved, PSW etc)
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge interrupt controller, perhaps enable it
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler
  Then OS will set up context for next process, load registers

and PSW, start running process …

31

Device Drivers

  Manage the complexity and differences among specific types of
devices (disk vs. mouse, different types of disks …)

  Each handles one type of device or small class of them (eg SCSI)

32

Typical Device Driver Design
  Operating system and driver communication

  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver responsibilities
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data

structures
33

Device Driver Behavior
  Check input parameters for validity, and translate them to device

specific language
  Check if device is free (wait or block if not)
  Issue commands to control device

  Write them into device controller’s registers
  Check after each if device is ready for next (wait or block if not)

  Block or wait for controller to finish work
  Check for errors, and pass data to device-independent software
  Return status information
  Process next queued request, or block waiting for next
  Challenges:

  Must be reentrant (can be called by an interrupt while running)
  Handle hot-pluggable devices and device removal while running
  Complex and many of them; bugs in them can crash system

34

Types of I/O Devices
  Block devices

  Organize data in fixed-size blocks
  Transfers are in units of blocks
  Blocks have addresses and data are therefore addressable
  E.g. hard disks, USB disks, CD-ROMs

  Character devices
  Delivers or accepts a stream of characters, no block structure
  Not addressable, no seeks
  Can read from stream or write to stream
  Printers, network interfaces, terminals

  Like everything, not a perfect classification
  E.g. tape drives have blocks but not randomly accessed
  Clocks are I/O devices that just generate interrupts

35

User-level interfaces: syscalls
  Character device interface

  read(deviceNumber, bufferAddr, size)
  Reads “size” bytes from a byte stream device to “bufferAddr”

  write(deviceNumber, bufferAddr, size)
  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

  Transfer a block of data from “deviceAddr” to “bufferAddr”

  write(deviceNumber, deviceAddr, bufferAddr)
  Transfer a block of data from “bufferAddr” to “deviceAddr”

  seek(deviceNumber, deviceAddress)
  Move the head to the correct position
  Usually not necessary

36

Sync vs Asynchronous I/O
  Synchronous I/O

  read() or write() will block a user process until its
completion

  OS overlaps synchronous I/O with another process
  Asynchronous I/O

  read() or write() will not block a user process
  returns -1, sets error code EAGAIN or EWOULDBLOCK

  user process can do other things before I/O
completion

  can determine if device is ready with select() / poll()
  Make asynchronous with O_NONBLOCK option on

open() or later via fcntl()

37

Example: Blocked Read
  A process issues a read call which executes a system call
  System call code checks for correctness
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

38

Does I/O overhead matter?
  Many steps involved in transmitting data
  How much can this overhead slow us

down?

39

Experiment: copy.c

Copyright ©: University of Illinois CS
241 Staff

40

Part 2: Filesystems

Filesystems
  A filesystem provides a high-level application access to disk

  As well as CD, DVD, tape, floppy, etc...
  Masks the details of low-level sector-based I/O operations
  Provides structured access to data (files and directories)
  Caches recently-accessed data in memory

  Hierarchical filesystems: Most common type
  Organized as a tree of directories and files

  Byte-oriented vs. record-oriented files
  UNIX, Windows, etc. all provide byte-oriented file access

  May read and write files a byte at a time
  Many older OS's provided only record-oriented files

  File composed of a set of records; may only read and write a record at a time

  Versioning filesystems
  Keep track of older versions of files
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

41

Filesystem Operations
  Filesystems provide a standard interface to files and directories:

  Create a file or directory
  Delete a file or directory
  Open a file or directory – allows subsequent access
  Read, write, append to file contents
  Add or remove directory entries
  Close a file or directory – terminates access

  What other features do filesystems provide?
  Accounting and quotas – prevent your classmates from hogging the disks
  Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots
  Indexing and search capabilities
  File versioning
  Encryption
  Automatic compression of infrequently-used files

  Should this functionality be part of the filesystem or built on top?
  Classic OS community debate: Where is the best place to put

functionality?
42

Basic Filesystem Structures
  Every file and directory is represented by an inode

  Stands for “index node”

  Contains two kinds of information:
  1) Metadata describing the file's owner, access rights, etc.
  2) Location of the file's blocks on disk

43

Directories
  A directory is a special kind of file that contains a list of (filename,

inode number) pairs

  These are the contents of the directory “file data” itself – NOT the
directory's inode!

  Filenames (in UNIX) are not stored in the inode at all!
  Two open questions:

  How do we find the root directory (“ / “ on UNIX systems)?
  How do we get from an inode number to the location of the inode on disk?

44

Pathname resolution
  To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

45

Locating inodes on disk
  All right, so directories tell us the inode number of a file.

  How the heck do we find the inode itself on disk?
  Basic idea: Top part of filesystem contains all of the inodes!

  inode number is just the “index” of the inode
  Easy to compute the block address of a given inode:

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

  This implies that a filesystem has a fixed number of potential inodes
  This number is generally set when the filesystem is created

  The superblock stores important metadata on filesystem layout, list of free
blocks, etc.

46

Stupid directory tricks
  Directories map filenames to inode numbers. What does this imply?
  We can create multiple pointers to the same inode in different

directories
  Or even the same directory with different filenames

  In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)
bash$ ln /home/foo /tmp/foo
bash$ ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk
  Not a copy! You will always see identical data no matter which filename you

use to read or write the file.
  Note: This is not the same as a “symbolic link”, which only links one

filename to another.
47

How should we organize blocks on a disk?
  Very simple policy: A file consists of linked blocks

  inode points to the first block of the file
  Each block points to the next block in the file (just a linked list on disk)

  What are the advantages and disadvantages??

  Indexed files
  inode contains a list of block numbers containing the file
  Array is allocated when the file is created

  What are the advantages and disadvantages??

48

Multilevel indexed files
  inode contains a list of 10-15 direct block pointers

  First few blocks of file can be referred to by the inode itself

  inode also contains a pointer to a single indirect, double
indirect, and triple indirect blocks
  Allows file to grow to be incredibly large!!!

49

File system caching
  Most filesystems cache significant amounts of disk in

memory
  e.g., Linux tries to use all “free” physical memory as a giant cache
  Avoids huge overhead for going to disk for every I/O

50

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

51

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

52

Caching issues (2)
  Reliability issues

  What happens when you write to the cache but the system crashes?
  What if you update some of the blocks on disk but not others?

  Example: Update the inode on disk but not the data blocks?
  Write-through cache: All writes immediately sent to disk
  Write-back cache: Cache writes stored in memory until evicted (then

written to disk)
  Which is better for performance? For reliability?

53

Caching issues (2)
  “Syncing” a filesystem writes back any dirty cache

blocks to disk
  UNIX “sync” command achieves this.
  Can also use fsync() system call to sync any blocks for a given file.

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to
the disk!

  This is also complicated by memory caching on the disk itself.

  Crash recovery
  If system crashes before sync occurs, “fsck” checks the filesystem

for errors
  Example: an inode pointing to a block that is marked as free in the

free block list
  Another example: An inode with no directory entry pointing to it

  These usually get linked into a “lost+found” directory
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

54

Caching issues (3)
  Read ahead

  Recall: Seek time dominates overhead of disk I/O
  So, would ideally like to read multiple blocks into memory when

you have a cache miss
  Amortize the cost of the seek for multiple reads

  Useful if file data is laid out in contiguous blocks on disk
  Especially if the application is performing sequential access to the file

55

