

1

I/O and Filesystems

Based on slides by Matt Welsh, Harvard

Announcements
  Post your web server URL on piazza!

  Exam review postponed till special session after last
class

  Research talk today: Darko Kirovski, Microsoft Research
 “Making optical media impossible to counterfeit”
 2405 SC, 4:00 p.m.

2

3

Part 1: Disks

A Disk Primer (Review)
  Disks consist of one or more platters divided into tracks

  Each platter may have one or two heads that perform read/write operations
  Each track consists of multiple sectors
  The set of sectors across all platters is a cylinder

4

Disks: messy & slow (Review)
  Low-level interface for reading and writing sectors

  Generally allow OS to read/write an entire sector at a
time

  No notion of “files” or “directories” – just raw sectors
  So, what do you do if you need to write a single byte to

a file?
  Disk may have numerous bad blocks – OS may need to

mask this from filesystem
  Access times are still very slow

  Disk seek times are around 10 ms
  Although raw throughput has increased dramatically

  Compare to several nanosec to access main memory
  Requires careful scheduling of I/O requests

5

Disk I/O Scheduling
  Given multiple outstanding I/O requests, what order to issue them?
  FIFO: Just schedule each I/O in the order it arrives

  What's wrong with this? Potentially lots of seek time!
  SSTF: Shortest seek time first

  Issue I/O with the nearest cylinder to the current one
  Favors middle tracks: Head rarely moves to edges of disk

  SCAN (or Elevator) Algorithm:
  Head has a current direction and current cylinder
  Sort I/Os according to the track # in the current direction of the head
  If no more I/Os in the current direction, reverse direction

  CSCAN Algorithm:
  Always move in one direction, “wrap around” to beginning of disk when

moving off the end
  Idea: Reduce variance in seek times, avoid discriminating against the

highest and lowest tracks

6

SCAN example

7

Current track

Direction

SCAN example

8

Current track

Direction

SCAN example

9

Current track

Direction

SCAN example

10

Current track

Direction

SCAN example

11

Current track

Direction

SCAN example

12

Current track

Direction

SCAN example

13

Current track

Direction

SCAN example

14

Current track

Direction

SCAN example

15

Current track

Direction

SCAN example

16

Current track

Direction

SCAN example

  What is the overhead of the SCAN algorithm?
  Count the total amount of seek time to service all I/O

requests
  I.e., count total number of track changes

  In this case, 12 tracks in --> direction
  15 tracks for long seek back
  5 tracks in <-- direction

  Total: 12+15+5 = 32 tracks
17

Current track

Direction

What about flash?
  Non-volatile, solid state storage

  No moving parts!
  Fast access times (about 0.1 msec)
  Can read and write individual bytes at a time

  Limitations
  Block erasure: However, must erase a whole “block”

before writing to it
  Read disturb: Reads can cause cells near the read

cell to change
  Solution: Periodically re-write blocks

  Limited number of erase/write cycles
  Most flash on the market today can withstand up to 1 million

erase/write cycles
  Flash Translation Layer (FTL): writes to a different cell each

time to wear-level device, cache to avoid excessive writes

  How does this affect how we design filesystems???

18

19

Part 2: I/O

Input and Output
  A computer’s job is to process data

  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices and

memory)

  Challenges with I/O devices
  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to
  access I/O devices
  As device-independent as possible
  Don’t hurt the performance capability of the I/O system too much

20

How does the CPU talk to devices?
  Device controller: Circuit that enables devices to talk to the

peripheral bus
  Host adapter: Circuit that enables the computer to talk to

the peripheral bus
  Bus: Wires that transfer data between components inside

computer
  Device controller allows OS to specify simpler instructions

to access data
  Example: a disk controller

  Translates “access sector 23” to “move head reader 1.672725272
cm from edge of platter”

  Disk controller “advertises” disk parameters to OS, hides internal
disk geometry

  Most modern hard drives have disk controller embedded as a chip
on the physical device

21

Review: Computer Architecture
  Compute hardware

  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O
  Programmed I/O (PIO)

  CPU does the work of moving data
  Direct Memory Access (DMA)

  CPU offloads the work of moving data to DMA controller 22

Programmed Input Device
  Device controller

  Status register
  ready: tells if the host is done
  busy: tells if the controller is done
  int: interrupt
  …

  Data registers
  A simple mouse design

  When moved, put (X, Y) in mouse’s
device controller’s data registers

  Interrupt CPU
  Input on an interrupt

  CPU saves state of currently-executing
program

  Reads values in X, Y registers
  Sets ready bit
  Wakes up a process/thread or execute

a piece of code to handle interrupt
23

Programmed Output Device
  Device

  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  CPU: Poll the busy bit
  Writes the data to data register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the busy bit

24

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register (ready, busy, interrupt, …)
  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction
  (command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device (size--; address++)
  Interrupt on completion (size == 0)

  Interrupt handler (on completion)
  Wakeup the blocked process

25

Memory-mapped I/O
  Use the same address bus to address both memory and

I/O devices
  The memory and registers of I/O devices are mapped

to address values
  Allows same CPU instructions to be used with regular

memory and devices
  I/O devices, memory controller, monitor address bus

  Each responds to addresses they own
  Orthogonal to DMA

  May be used with, or without, DMA

26

Polling- vs. Interrupt-driven I/O
  Polling

  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU busy waits for completion

  Interrupt-driven I/O
  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU continues operation until interrupt

  Direct Memory Access (DMA)
  Typically done with Interrupt-driven I/O
  CPU asks DMA controller to perform device-to-memory transfer
  DMA issues I/O command and transfers new item into memory
  CPU module is interrupted after completion

  Which is better, polling or interrupt-driven I/O?
27

Polling- vs. Interrupt-driven I/O
  Polling

  Expensive for large transfers
  Better for small, dedicated systems with

infrequent I/O

  Interrupt-driven
  Overcomes CPU busy waiting
  I/O module interrupts when ready: event driven

28

How Interrupts are implemented
  CPU hardware has an interrupt report line that the

CPU tests after executing every instruction
  If a(ny) device raises an interrupt by setting interrupt

report line
  CPU catches the interrupt and saves the state of current running

process into PCB
  CPU dispatches/starts the interrupt handler
  Interrupt handler determines cause, services the device and clears

the interrupt report line

  Other uses of interrupts: exceptions
  Division by zero, wrong address
  System calls (software interrupts/signals, trap)
  Virtual memory paging

29

I/O Software Stack

30

Interrupt Handling
  Save context (registers that hw hasn’t saved, PSW etc)
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge interrupt controller, perhaps enable it
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler
  Then OS will set up context for next process, load registers

and PSW, start running process …

31

Device Drivers

  Manage the complexity and differences among specific types of
devices (disk vs. mouse, different types of disks …)

  Each handles one type of device or small class of them (eg SCSI)

32

Typical Device Driver Design
  Operating system and driver communication

  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver responsibilities
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data

structures
33

Device Driver Behavior
  Check input parameters for validity, and translate them to device

specific language
  Check if device is free (wait or block if not)
  Issue commands to control device

  Write them into device controller’s registers
  Check after each if device is ready for next (wait or block if not)

  Block or wait for controller to finish work
  Check for errors, and pass data to device-independent software
  Return status information
  Process next queued request, or block waiting for next
  Challenges:

  Must be reentrant (can be called by an interrupt while running)
  Handle hot-pluggable devices and device removal while running
  Complex and many of them; bugs in them can crash system

34

Types of I/O Devices
  Block devices

  Organize data in fixed-size blocks
  Transfers are in units of blocks
  Blocks have addresses and data are therefore addressable
  E.g. hard disks, USB disks, CD-ROMs

  Character devices
  Delivers or accepts a stream of characters, no block structure
  Not addressable, no seeks
  Can read from stream or write to stream
  Printers, network interfaces, terminals

  Like everything, not a perfect classification
  E.g. tape drives have blocks but not randomly accessed
  Clocks are I/O devices that just generate interrupts

35

User-level interfaces: syscalls
  Character device interface

  read(deviceNumber, bufferAddr, size)
  Reads “size” bytes from a byte stream device to “bufferAddr”

  write(deviceNumber, bufferAddr, size)
  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

  Transfer a block of data from “deviceAddr” to “bufferAddr”

  write(deviceNumber, deviceAddr, bufferAddr)
  Transfer a block of data from “bufferAddr” to “deviceAddr”

  seek(deviceNumber, deviceAddress)
  Move the head to the correct position
  Usually not necessary

36

Sync vs Asynchronous I/O
  Synchronous I/O

  read() or write() will block a user process until its
completion

  OS overlaps synchronous I/O with another process
  Asynchronous I/O

  read() or write() will not block a user process
  returns -1, sets error code EAGAIN or EWOULDBLOCK

  user process can do other things before I/O
completion

  can determine if device is ready with select() / poll()
  Make asynchronous with O_NONBLOCK option on

open() or later via fcntl()

37

Example: Blocked Read
  A process issues a read call which executes a system call
  System call code checks for correctness
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

38

Does I/O overhead matter?
  Many steps involved in transmitting data
  How much can this overhead slow us

down?

39

Experiment: copy.c

Copyright ©: University of Illinois CS
241 Staff

40

Part 2: Filesystems

Filesystems
  A filesystem provides a high-level application access to disk

  As well as CD, DVD, tape, floppy, etc...
  Masks the details of low-level sector-based I/O operations
  Provides structured access to data (files and directories)
  Caches recently-accessed data in memory

  Hierarchical filesystems: Most common type
  Organized as a tree of directories and files

  Byte-oriented vs. record-oriented files
  UNIX, Windows, etc. all provide byte-oriented file access

  May read and write files a byte at a time
  Many older OS's provided only record-oriented files

  File composed of a set of records; may only read and write a record at a time

  Versioning filesystems
  Keep track of older versions of files
  e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

41

Filesystem Operations
  Filesystems provide a standard interface to files and directories:

  Create a file or directory
  Delete a file or directory
  Open a file or directory – allows subsequent access
  Read, write, append to file contents
  Add or remove directory entries
  Close a file or directory – terminates access

  What other features do filesystems provide?
  Accounting and quotas – prevent your classmates from hogging the disks
  Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots
  Indexing and search capabilities
  File versioning
  Encryption
  Automatic compression of infrequently-used files

  Should this functionality be part of the filesystem or built on top?
  Classic OS community debate: Where is the best place to put

functionality?
42

Basic Filesystem Structures
  Every file and directory is represented by an inode

  Stands for “index node”

  Contains two kinds of information:
  1) Metadata describing the file's owner, access rights, etc.
  2) Location of the file's blocks on disk

43

Directories
  A directory is a special kind of file that contains a list of (filename,

inode number) pairs

  These are the contents of the directory “file data” itself – NOT the
directory's inode!

  Filenames (in UNIX) are not stored in the inode at all!
  Two open questions:

  How do we find the root directory (“ / “ on UNIX systems)?
  How do we get from an inode number to the location of the inode on disk?

44

Pathname resolution
  To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

45

Locating inodes on disk
  All right, so directories tell us the inode number of a file.

  How the heck do we find the inode itself on disk?
  Basic idea: Top part of filesystem contains all of the inodes!

  inode number is just the “index” of the inode
  Easy to compute the block address of a given inode:

  block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

  This implies that a filesystem has a fixed number of potential inodes
  This number is generally set when the filesystem is created

  The superblock stores important metadata on filesystem layout, list of free
blocks, etc.

46

Stupid directory tricks
  Directories map filenames to inode numbers. What does this imply?
  We can create multiple pointers to the same inode in different

directories
  Or even the same directory with different filenames

  In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)
bash$ ln /home/foo /tmp/foo
bash$ ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo
!

  “/home/foo” and “/tmp/foo” now refer to the same file on disk
  Not a copy! You will always see identical data no matter which filename you

use to read or write the file.
  Note: This is not the same as a “symbolic link”, which only links one

filename to another.
47

How should we organize blocks on a disk?
  Very simple policy: A file consists of linked blocks

  inode points to the first block of the file
  Each block points to the next block in the file (just a linked list on disk)

  What are the advantages and disadvantages??

  Indexed files
  inode contains a list of block numbers containing the file
  Array is allocated when the file is created

  What are the advantages and disadvantages??

48

Multilevel indexed files
  inode contains a list of 10-15 direct block pointers

  First few blocks of file can be referred to by the inode itself

  inode also contains a pointer to a single indirect, double
indirect, and triple indirect blocks
  Allows file to grow to be incredibly large!!!

49

File system caching
  Most filesystems cache significant amounts of disk in

memory
  e.g., Linux tries to use all “free” physical memory as a giant cache
  Avoids huge overhead for going to disk for every I/O

50

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

51

Caching issues
  Where should the cache go?

  Below the filesystem layer: Cache individual disk blocks
  Above the filesystem layer: Cache entire files and directories
  Which is better??

52

Caching issues (2)
  Reliability issues

  What happens when you write to the cache but the system crashes?
  What if you update some of the blocks on disk but not others?

  Example: Update the inode on disk but not the data blocks?
  Write-through cache: All writes immediately sent to disk
  Write-back cache: Cache writes stored in memory until evicted (then

written to disk)
  Which is better for performance? For reliability?

53

Caching issues (2)
  “Syncing” a filesystem writes back any dirty cache

blocks to disk
  UNIX “sync” command achieves this.
  Can also use fsync() system call to sync any blocks for a given file.

  Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to
the disk!

  This is also complicated by memory caching on the disk itself.

  Crash recovery
  If system crashes before sync occurs, “fsck” checks the filesystem

for errors
  Example: an inode pointing to a block that is marked as free in the

free block list
  Another example: An inode with no directory entry pointing to it

  These usually get linked into a “lost+found” directory
  inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

54

Caching issues (3)
  Read ahead

  Recall: Seek time dominates overhead of disk I/O
  So, would ideally like to read multiple blocks into memory when

you have a cache miss
  Amortize the cost of the seek for multiple reads

  Useful if file data is laid out in contiguous blocks on disk
  Especially if the application is performing sequential access to the file

55

