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I/O and Filesystems 

Based on slides by Matt Welsh, Harvard 



Announcements 
  Finals approaching, make sure you know when yours 

are 
  Ours: May 11,  1:30 – 4:30 pm 

  Honors projects due soon 
  By April 30: contact us to schedule demo 
  Before final exam: complete demo 
  All members must contribute substantially and 

understand the entire project 
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But first, review 
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Threads in your web server 
  Why are multiple threads useful in your web server – as 

opposed to serving all clients with a single thread in a 
single process? (Check all that apply) 

  Multiple threads can spread work across multiple cores / CPUs to 
decrease processing time. 

  Multiple threads have greater memory space to read files and write 
them to the network. 

  A single thread would have to switch back and forth between each 
connection, which is slow and annoying to program. 

  One thread can be reading/writing from the network while another 
is waiting to read a file off disk. 
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DNS caching 
  Why does the DNS system use caching? (Check all that 

apply) 

  Returns more up-to-date results 

  Improves speed of response 

  Decreases workload on root and authoritative DNS servers 

  Improves security 

  Improves robustness (things still work even if some DNS servers 
fail) 
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Part 1: Disks 



A Disk Primer 
  Disks consist of one or more platters divided into tracks 

  Each platter may have one or two heads that perform read/write operations 
  Each track consists of multiple sectors 
  The set of sectors across all platters is a cylinder 
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Hard Disk Evolution 
  IBM 305 RAMAC (1956) 

  First commercially produced hard drive 
  5 Mbyte capacity, 50 platters each 24” in diameter 
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Cost of recording your life 
  How much does the disk storage to record 

the audio of your entire life cost? 
  The whole thing ... even when you’re asleep 

and even the part you haven’t lived yet 
  Assume pretty good quality audio 
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Hard Drive Evolution 
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Disk access time 
  Command overhead: 

  Time to issue I/O, get the HDD to start responding, select appropriate 
head 

  Seek time: 
  Time to move disk arm to the appropriate track 
  Depends on how fast you can physically move the disk arm 

  These times are not improving rapidly! 

  Settle time: 
  Time for head position to stabilize on the selected track 

  Rotational latency: 
  Time for the appropriate sector to move under the disk arm 
  Depends on the rotation speed of the disk (e.g., 7200 RPM) 

  Transfer time 
  Time to transfer a sector to/from the disk controller 
  Depends on density of bits on disk and RPM of disk rotation 
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Disks are messy and slow 
  Low-level interface for reading and writing sectors 

  Generally allow OS to read/write an entire sector at a 
time 

  No notion of “files” or “directories” – just raw sectors 
  So, what do you do if you need to write a single byte to 

a file? 
  Disk may have numerous bad blocks – OS may need to 

mask this from filesystem 
  Access times are still very slow 

  Disk seek times are around 10 ms 
  Although raw throughput has increased dramatically 

  Compare to several nanosec to access main memory 
  Requires careful scheduling of I/O requests 

12 



ATA Interfaces 
  Serial ATA (SATA): Today’s standard for connecting hard 

drives to the motherboard 
  Using a serial (not parallel) interface 

  Earlier versions used a parallel interface (PATA) 
  Speeds starting at 1.5 Gbit/sec (SATA 1.0) 

  SATA 2.0 (3.0 Gbit/sec), SATA 3.0 (6.0 Gbit/sec) 

  Can drive longer cables at much higher clock speeds than 
parallel cable 
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Disk I/O Scheduling 
  Given multiple outstanding I/O requests, what order to 

issue them? 
  Why does it matter? 
  Major goals of disk scheduling: 
  1) Minimize latency for small transfers 

  Primarily: Avoid long seeks by ordering accesses according to disk 
head locality 

  2) Maximize throughput for large transfers 
  Large databases and scientific workloads often involve enormous 

files and datasets 

  Note that disk block layout also has a large impact on 
performance 
  Where we place file blocks, directories, file system metadata, etc. 
  This will be covered in future lectures 
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Disk I/O Scheduling 
  Given multiple outstanding I/O requests, what order to issue them? 
  FIFO: Just schedule each I/O in the order it arrives 

  What's wrong with this? Potentially lots of seek time! 
  SSTF: Shortest seek time first 

  Issue I/O with the nearest cylinder to the current one 
  Favors middle tracks: Head rarely moves to edges of disk 

  SCAN (or Elevator) Algorithm: 
  Head has a current direction and current cylinder 
  Sort I/Os according to the track # in the current direction of the head 
  If no more I/Os in the current direction, reverse direction 

  CSCAN Algorithm: 
  Always move in one direction, “wrap around” to beginning of disk when 

moving off the end 
  Idea: Reduce variance in seek times, avoid discriminating against the 

highest and lowest tracks 
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SCAN example 
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SCAN example 

  What is the overhead of the SCAN algorithm? 
  Count the total amount of seek time to service all I/O 

requests 
  I.e., count total number of track changes 

  In this case, 12 tracks in --> direction 
  15 tracks for long seek back 
  5 tracks in <-- direction 

  Total: 12+15+5 = 32 tracks 
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What about flash? 
  Non-volatile, solid state storage 

  No moving parts! 
  Fast access times (about 0.1 msec) 
  Can read and write individual bytes at a time 

  Limitations 
  Block erasure: However, must erase a whole “block” 

before writing to it 
  Read disturb: Reads can cause cells near the read 

cell to change 
  Solution: Periodically re-write blocks 

  Limited number of erase/write cycles 
  Most flash on the market today can withstand up to 1 million 

erase/write cycles 
  Flash Translation Layer (FTL): writes to a different cell each 

time to wear-level device, cache to avoid excessive writes 

  How does this affect how we design filesystems??? 
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Part 2: I/O 



Input and Output 
  A computer’s job is to process data 

  Computation (CPU, cache, and memory) 
  Move data into and out of a system (between I/O devices and 

memory) 

  Challenges with I/O devices 
  Different categories: storage, networking, displays, etc. 
  Large number of device drivers to support 
  Device drivers run in kernel mode and can crash systems 

  Goals of the OS 
  Provide a generic, consistent, convenient and reliable way to 
  access I/O devices 
  As device-independent as possible 
  Don’t hurt the performance capability of the I/O system too much 
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How does the CPU talk to devices? 
  Device controller: Circuit that enables devices to talk to the 

peripheral bus 
  Host adapter: Circuit that enables the computer to talk to 

the peripheral bus 
  Bus: Wires that transfer data between components inside 

computer 
  Device controller allows OS to specify simpler instructions 

to access data 
  Example: a disk controller 

  Translates “access sector 23” to “move head reader 1.672725272 
cm from edge of platter” 

  Disk controller “advertises” disk parameters to OS, hides internal 
disk geometry 

  Most modern hard drives have disk controller embedded as a chip 
on the physical device 
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Review: Computer Architecture 
  Compute hardware 

  CPU and caches 
  Chipset 
  Memory 

  I/O Hardware 
  I/O bus or interconnect 
  I/O controller or adaptor 
  I/O device 

  Two types of I/O 
  Programmed I/O (PIO) 

  CPU does the work of moving data 
  Direct Memory Access (DMA) 

  CPU offloads the work of moving data to DMA controller 31 



Programmed Input Device 
  Device controller 

  Status register 
  ready: tells if the host is done 
  busy: tells if the controller is done 
  int: interrupt 
  … 

  Data registers 
  A simple mouse design 

  When moved, put (X, Y) in mouse’s 
device controller’s data registers 

  Interrupt CPU 
  Input on an interrupt 

  CPU saves state of currently-executing 
program 

  Reads values in X, Y registers 
  Sets ready bit 
  Wakes up a process/thread or execute 

a piece of code to handle interrupt 
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Programmed Output Device 
  Device 

  Status registers (ready, busy, … ) 
  Data registers 

  Example 
  A serial output device 

  Perform an output 
  CPU: Poll the busy bit 
  Writes the data to data register(s) 
  Set ready bit 
  Controller sets busy bit and 

transfers data 
  Controller clears the busy bit 

33 



Direct Memory Access (DMA) 
  DMA controller or adaptor 

  Status register (ready, busy, interrupt, …) 
  DMA command register 
  DMA register (address, size) 
  DMA buffer 

  Host CPU initiates DMA 
  Device driver call (kernel mode) 
  Wait until DMA device is free 
  Initiate a DMA transaction 
  (command, memory address, size) 
  Block 

  Controller performs DMA 
  DMA data to device (size--; address++) 
  Interrupt on completion (size == 0) 

  Interrupt handler (on completion) 
  Wakeup the blocked process 
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Memory-mapped I/O 
  Use the same address bus to address both memory and 

I/O devices 
  The memory and registers of I/O devices are mapped 

to address values 
  Allows same CPU instructions to be used with regular 

memory and devices 
  I/O devices, memory controller, monitor address bus   

  Each responds to addresses they own 
  Orthogonal to DMA 

  May be used with, or without, DMA 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU busy waits for completion 

  Interrupt-driven I/O 
  CPU issues I/O command  
  CPU directly writes instructions into device’s registers 
  CPU continues operation until interrupt 

  Direct Memory Access (DMA) 
  Typically done with Interrupt-driven I/O 
  CPU asks DMA controller to perform device-to-memory transfer 
  DMA issues I/O command and transfers new item into memory 
  CPU module is interrupted after completion 

  Which is better, polling or interrupt-driven I/O? 
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Polling- vs. Interrupt-driven I/O 
  Polling 

  Expensive for large transfers 
  Better for small, dedicated systems with 

infrequent I/O 

  Interrupt-driven  
  Overcomes CPU busy waiting 
  I/O module interrupts when ready: event driven 
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How Interrupts are implemented 
  CPU hardware has an interrupt report line that the 

CPU tests after executing every instruction  
  If a(ny) device raises an interrupt by setting interrupt 

report line 
  CPU catches the interrupt and saves the state of current running 

process into PCB 
  CPU dispatches/starts the interrupt handler  
  Interrupt handler determines cause, services the device and clears 

the interrupt report line 

  Other uses of interrupts: exceptions 
  Division by zero, wrong address  
  System calls (software interrupts/signals, trap)  
  Virtual memory paging 
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I/O Software Stack 
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Interrupt Handling 
  Save context (registers that hw hasn’t saved, PSW etc) 
  Mask interrupts if needed 
  Set up a context for interrupt service 
  Set up a stack for interrupt service 
  Acknowledge interrupt controller, perhaps enable it 
  Save entire context to PCB 
  Run the interrupt service 
  Unmask interrupts if needed 
  Possibly change the priority of the process 
  Run the scheduler 
  Then OS will set up context for next process, load registers 

and PSW, start running process … 
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Device Drivers 

  Manage the complexity and differences among specific types of 
devices (disk vs. mouse, different types of disks …) 

  Each handles one type of device or small class of them (eg SCSI) 
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Typical Device Driver Design 
  Operating system and driver communication 

  Commands and data between OS and device drivers 

  Driver and hardware communication 
  Commands and data between driver and hardware 

  Driver responsibilities 
  Initialize devices 
  Interpreting commands from OS 
  Schedule multiple outstanding requests 
  Manage data transfers 
  Accept and process interrupts 
  Maintain the integrity of driver and kernel data 

structures 
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Device Driver Behavior 
  Check input parameters for validity, and translate them to device 

specific language 
  Check if device is free (wait or block if not) 
  Issue commands to control device 

  Write them into device controller’s registers 
  Check after each if device is ready for next (wait or block if not) 

  Block or wait for controller to finish work 
  Check for errors, and pass data to device-independent software 
  Return status information 
  Process next queued request, or block waiting for next 
  Challenges: 

  Must be reentrant (can be called by an interrupt while running) 
  Handle hot-pluggable devices and device removal while running 
  Complex and many of them; bugs in them can crash system 
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Types of I/O Devices 
  Block devices 

  Organize data in fixed-size blocks 
  Transfers are in units of blocks 
  Blocks have addresses and data are therefore addressable 
  E.g. hard disks, USB disks, CD-ROMs 

  Character devices 
  Delivers or accepts a stream of characters, no block structure 
  Not addressable, no seeks 
  Can read from stream or write to stream 
  Printers, network interfaces, terminals 

  Like everything, not a perfect classification 
  E.g. tape drives have blocks but not randomly accessed 
  Clocks are I/O devices that just generate interrupts 
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Char/Block Device Interfaces 
  Character device interface 

  read( deviceNumber, bufferAddr, size ) 
  Reads “size” bytes from a byte stream device to “bufferAddr” 

  write( deviceNumber, bufferAddr, size ) 
  Write “size” bytes from “bufferAddr” to a byte stream device 

  Block device interface 
  read( deviceNumber, deviceAddr, bufferAddr ) 

  Transfer a block of data from “deviceAddr” to “bufferAddr” 

  write( deviceNumber, deviceAddr, bufferAddr ) 
  Transfer a block of data from “bufferAddr” to “deviceAddr” 

  seek( deviceNumber, deviceAddress ) 
  Move the head to the correct position 
  Usually not necessary 
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Sync vs Asynchronous I/O 
  Synchronous I/O 

  read() or write() will block a user process until 
its completion 

  OS overlaps synchronous I/O with another 
process 

  Asynchronous I/O 
  read() or write() will not block a user process 
  user process can do other things before I/O 

completion 
  I/O completion will notify the user process 
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Example: Blocked Read 
  A process issues a read call which executes a system call 
  System call code checks for correctness 
  If it needs to perform I/O, it will issues a device driver call 
  Device driver allocates a buffer for read and schedules I/O 
  Controller performs DMA data transfer 
  Block the current process and schedule a ready process 
  Device generates an interrupt on completion 
  Interrupt handler stores any data and notifies completion 
  Move data from kernel buffer to user buffer 
  Wakeup blocked process (make it ready) 
  User process continues when it is scheduled to run 
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