

1

I/O and Filesystems

Based on slides by Matt Welsh, Harvard

Announcements
  Finals approaching, make sure you know when yours

are
  Ours: May 11, 1:30 – 4:30 pm

  Honors projects due soon
  By April 30: contact us to schedule demo
  Before final exam: complete demo
  All members must contribute substantially and

understand the entire project

2

But first, review

3

Threads in your web server
  Why are multiple threads useful in your web server – as

opposed to serving all clients with a single thread in a
single process? (Check all that apply)

  Multiple threads can spread work across multiple cores / CPUs to
decrease processing time.

  Multiple threads have greater memory space to read files and write
them to the network.

  A single thread would have to switch back and forth between each
connection, which is slow and annoying to program.

  One thread can be reading/writing from the network while another
is waiting to read a file off disk.

4

DNS caching
  Why does the DNS system use caching? (Check all that

apply)

  Returns more up-to-date results

  Improves speed of response

  Decreases workload on root and authoritative DNS servers

  Improves security

  Improves robustness (things still work even if some DNS servers
fail)

5

6

Part 1: Disks

A Disk Primer
  Disks consist of one or more platters divided into tracks

  Each platter may have one or two heads that perform read/write operations
  Each track consists of multiple sectors
  The set of sectors across all platters is a cylinder

7

Hard Disk Evolution
  IBM 305 RAMAC (1956)

  First commercially produced hard drive
  5 Mbyte capacity, 50 platters each 24” in diameter

8

Cost of recording your life
  How much does the disk storage to record

the audio of your entire life cost?
  The whole thing ... even when you’re asleep

and even the part you haven’t lived yet
  Assume pretty good quality audio

9

Hard Drive Evolution

10

Disk access time
  Command overhead:

  Time to issue I/O, get the HDD to start responding, select appropriate
head

  Seek time:
  Time to move disk arm to the appropriate track
  Depends on how fast you can physically move the disk arm

  These times are not improving rapidly!

  Settle time:
  Time for head position to stabilize on the selected track

  Rotational latency:
  Time for the appropriate sector to move under the disk arm
  Depends on the rotation speed of the disk (e.g., 7200 RPM)

  Transfer time
  Time to transfer a sector to/from the disk controller
  Depends on density of bits on disk and RPM of disk rotation

11

Disks are messy and slow
  Low-level interface for reading and writing sectors

  Generally allow OS to read/write an entire sector at a
time

  No notion of “files” or “directories” – just raw sectors
  So, what do you do if you need to write a single byte to

a file?
  Disk may have numerous bad blocks – OS may need to

mask this from filesystem
  Access times are still very slow

  Disk seek times are around 10 ms
  Although raw throughput has increased dramatically

  Compare to several nanosec to access main memory
  Requires careful scheduling of I/O requests

12

ATA Interfaces
  Serial ATA (SATA): Today’s standard for connecting hard

drives to the motherboard
  Using a serial (not parallel) interface

  Earlier versions used a parallel interface (PATA)
  Speeds starting at 1.5 Gbit/sec (SATA 1.0)

  SATA 2.0 (3.0 Gbit/sec), SATA 3.0 (6.0 Gbit/sec)

  Can drive longer cables at much higher clock speeds than
parallel cable

13

Disk I/O Scheduling
  Given multiple outstanding I/O requests, what order to

issue them?
  Why does it matter?
  Major goals of disk scheduling:
  1) Minimize latency for small transfers

  Primarily: Avoid long seeks by ordering accesses according to disk
head locality

  2) Maximize throughput for large transfers
  Large databases and scientific workloads often involve enormous

files and datasets

  Note that disk block layout also has a large impact on
performance
  Where we place file blocks, directories, file system metadata, etc.
  This will be covered in future lectures

14

Disk I/O Scheduling
  Given multiple outstanding I/O requests, what order to issue them?
  FIFO: Just schedule each I/O in the order it arrives

  What's wrong with this? Potentially lots of seek time!
  SSTF: Shortest seek time first

  Issue I/O with the nearest cylinder to the current one
  Favors middle tracks: Head rarely moves to edges of disk

  SCAN (or Elevator) Algorithm:
  Head has a current direction and current cylinder
  Sort I/Os according to the track # in the current direction of the head
  If no more I/Os in the current direction, reverse direction

  CSCAN Algorithm:
  Always move in one direction, “wrap around” to beginning of disk when

moving off the end
  Idea: Reduce variance in seek times, avoid discriminating against the

highest and lowest tracks

15

SCAN example

16

Current track

Direction

SCAN example

17

Current track

Direction

SCAN example

18

Current track

Direction

SCAN example

19

Current track

Direction

SCAN example

20

Current track

Direction

SCAN example

21

Current track

Direction

SCAN example

22

Current track

Direction

SCAN example

23

Current track

Direction

SCAN example

24

Current track

Direction

SCAN example

25

Current track

Direction

SCAN example

  What is the overhead of the SCAN algorithm?
  Count the total amount of seek time to service all I/O

requests
  I.e., count total number of track changes

  In this case, 12 tracks in --> direction
  15 tracks for long seek back
  5 tracks in <-- direction

  Total: 12+15+5 = 32 tracks
26

Current track

Direction

What about flash?
  Non-volatile, solid state storage

  No moving parts!
  Fast access times (about 0.1 msec)
  Can read and write individual bytes at a time

  Limitations
  Block erasure: However, must erase a whole “block”

before writing to it
  Read disturb: Reads can cause cells near the read

cell to change
  Solution: Periodically re-write blocks

  Limited number of erase/write cycles
  Most flash on the market today can withstand up to 1 million

erase/write cycles
  Flash Translation Layer (FTL): writes to a different cell each

time to wear-level device, cache to avoid excessive writes

  How does this affect how we design filesystems???

27

28

Part 2: I/O

Input and Output
  A computer’s job is to process data

  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices and

memory)

  Challenges with I/O devices
  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to
  access I/O devices
  As device-independent as possible
  Don’t hurt the performance capability of the I/O system too much

29

How does the CPU talk to devices?
  Device controller: Circuit that enables devices to talk to the

peripheral bus
  Host adapter: Circuit that enables the computer to talk to

the peripheral bus
  Bus: Wires that transfer data between components inside

computer
  Device controller allows OS to specify simpler instructions

to access data
  Example: a disk controller

  Translates “access sector 23” to “move head reader 1.672725272
cm from edge of platter”

  Disk controller “advertises” disk parameters to OS, hides internal
disk geometry

  Most modern hard drives have disk controller embedded as a chip
on the physical device

30

Review: Computer Architecture
  Compute hardware

  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O
  Programmed I/O (PIO)

  CPU does the work of moving data
  Direct Memory Access (DMA)

  CPU offloads the work of moving data to DMA controller 31

Programmed Input Device
  Device controller

  Status register
  ready: tells if the host is done
  busy: tells if the controller is done
  int: interrupt
  …

  Data registers
  A simple mouse design

  When moved, put (X, Y) in mouse’s
device controller’s data registers

  Interrupt CPU
  Input on an interrupt

  CPU saves state of currently-executing
program

  Reads values in X, Y registers
  Sets ready bit
  Wakes up a process/thread or execute

a piece of code to handle interrupt
32

Programmed Output Device
  Device

  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  CPU: Poll the busy bit
  Writes the data to data register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the busy bit

33

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register (ready, busy, interrupt, …)
  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction
  (command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device (size--; address++)
  Interrupt on completion (size == 0)

  Interrupt handler (on completion)
  Wakeup the blocked process

34

Memory-mapped I/O
  Use the same address bus to address both memory and

I/O devices
  The memory and registers of I/O devices are mapped

to address values
  Allows same CPU instructions to be used with regular

memory and devices
  I/O devices, memory controller, monitor address bus

  Each responds to addresses they own
  Orthogonal to DMA

  May be used with, or without, DMA

35

Polling- vs. Interrupt-driven I/O
  Polling

  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU busy waits for completion

  Interrupt-driven I/O
  CPU issues I/O command
  CPU directly writes instructions into device’s registers
  CPU continues operation until interrupt

  Direct Memory Access (DMA)
  Typically done with Interrupt-driven I/O
  CPU asks DMA controller to perform device-to-memory transfer
  DMA issues I/O command and transfers new item into memory
  CPU module is interrupted after completion

  Which is better, polling or interrupt-driven I/O?
36

Polling- vs. Interrupt-driven I/O
  Polling

  Expensive for large transfers
  Better for small, dedicated systems with

infrequent I/O

  Interrupt-driven
  Overcomes CPU busy waiting
  I/O module interrupts when ready: event driven

37

How Interrupts are implemented
  CPU hardware has an interrupt report line that the

CPU tests after executing every instruction
  If a(ny) device raises an interrupt by setting interrupt

report line
  CPU catches the interrupt and saves the state of current running

process into PCB
  CPU dispatches/starts the interrupt handler
  Interrupt handler determines cause, services the device and clears

the interrupt report line

  Other uses of interrupts: exceptions
  Division by zero, wrong address
  System calls (software interrupts/signals, trap)
  Virtual memory paging

38

I/O Software Stack

39

Interrupt Handling
  Save context (registers that hw hasn’t saved, PSW etc)
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge interrupt controller, perhaps enable it
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler
  Then OS will set up context for next process, load registers

and PSW, start running process …

40

Device Drivers

  Manage the complexity and differences among specific types of
devices (disk vs. mouse, different types of disks …)

  Each handles one type of device or small class of them (eg SCSI)

41

Typical Device Driver Design
  Operating system and driver communication

  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver responsibilities
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data

structures
42

Device Driver Behavior
  Check input parameters for validity, and translate them to device

specific language
  Check if device is free (wait or block if not)
  Issue commands to control device

  Write them into device controller’s registers
  Check after each if device is ready for next (wait or block if not)

  Block or wait for controller to finish work
  Check for errors, and pass data to device-independent software
  Return status information
  Process next queued request, or block waiting for next
  Challenges:

  Must be reentrant (can be called by an interrupt while running)
  Handle hot-pluggable devices and device removal while running
  Complex and many of them; bugs in them can crash system

43

Types of I/O Devices
  Block devices

  Organize data in fixed-size blocks
  Transfers are in units of blocks
  Blocks have addresses and data are therefore addressable
  E.g. hard disks, USB disks, CD-ROMs

  Character devices
  Delivers or accepts a stream of characters, no block structure
  Not addressable, no seeks
  Can read from stream or write to stream
  Printers, network interfaces, terminals

  Like everything, not a perfect classification
  E.g. tape drives have blocks but not randomly accessed
  Clocks are I/O devices that just generate interrupts

44

Char/Block Device Interfaces
  Character device interface

  read(deviceNumber, bufferAddr, size)
  Reads “size” bytes from a byte stream device to “bufferAddr”

  write(deviceNumber, bufferAddr, size)
  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

  Transfer a block of data from “deviceAddr” to “bufferAddr”

  write(deviceNumber, deviceAddr, bufferAddr)
  Transfer a block of data from “bufferAddr” to “deviceAddr”

  seek(deviceNumber, deviceAddress)
  Move the head to the correct position
  Usually not necessary

45

Sync vs Asynchronous I/O
  Synchronous I/O

  read() or write() will block a user process until
its completion

  OS overlaps synchronous I/O with another
process

  Asynchronous I/O
  read() or write() will not block a user process
  user process can do other things before I/O

completion
  I/O completion will notify the user process

46

Example: Blocked Read
  A process issues a read call which executes a system call
  System call code checks for correctness
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

47

