
Copyright © University of Illinois CS 241 Staff 1

Network programming, DNS,
and NAT

Today

  Network programming tips
  Domain name system
  Network Address Translation
  Bonus slides (for your reference)

  Timers with select()
  select() vs. poll()

Copyright © University of Illinois CS 241 Staff 2

Tip #1: Can’t bind?

  Problem: How come I get "address already
in use" from bind()?
  You have stopped your server, and then re-

started it right away
  The sockets that were used by the first

incarnation of the server are still active

CS 241 Copyright ©: University of Illinois CS 241 Staff 3

CS 241 Copyright ©: University of Illinois CS 241 Staff 4

setsockopt

int yes = 1;
setsockopt (fd, SOL_SOCKET,

SO_REUSEADDR, (char *) &yes, sizeof
(yes));
  Call just before bind()
  Allows bind to succeed despite the existence of

existing connections in the requested TCP port
  Connections in limbo (e.g. lost final ACK) will

cause bind to fail

Tip #2: Dealing with abruptly
closed connection

Copyright © University of Illinois CS 241 Staff 5

[demo: server.c]

CS 241 Copyright ©: University of Illinois CS 241 Staff 6

signal

  Problem: Socket at other end is closed
  Write to your end generates SIGPIPE
  This signal kills the program by default!

signal (SIGPIPE, SIG_IGN);
  Call at start of main in server
  Allows you to ignore broken pipe signals
  Can ignore or install a proper signal handler
  Default handler exits (terminates process)

Tip #3: Beej’s guide

  Beej's Guide to Network Programming

Copyright © University of Illinois CS 241 Staff 7

http://beej.us/guide/bgnet/

8

The Domain Name System"

Slides thanks in part to Jennifer Rexford,
Ion Stoica, Vern Paxson, and Scott Shenker

9

Host Names vs. IP addresses"

  Host names
  Mnemonic name appreciated by humans
  Variable length, full alphabet of characters
  Provide little (if any) information about physical location
  Examples: www.cnn.com and bbc.co.uk

  IP addresses
  Numerical address appreciated by routers
  Fixed length, binary number
  Hierarchical, related to host location
  Examples: 64.236.16.20 and 212.58.224.131

10

Separating Naming and
Addressing"

  Names are easier to remember
  cnn.com vs. 64.236.16.20 (but not shortened urls)

  Addresses can change underneath
  Move www.cnn.com to 4.125.91.21
  E.g., renumbering when changing providers

  Name could map to multiple IP addresses
  www.cnn.com to multiple (8) replicas of the Web site
  Enables

  Load-balancing
  Reducing latency by picking nearby servers
  Tailoring content based on requester’s location/identity

  Multiple names for the same address
  E.g., aliases like www.cnn.com and cnn.com

11

Domain Name System (DNS)"

  Properties of DNS
  Hierarchical name space divided into zones
  Zones distributed over collection of DNS servers

  Hierarchy of DNS servers
  Root (hardwired into other servers)
  Top-level domain (TLD) servers
  Authoritative DNS servers

  Performing the translations
  Local DNS servers
  Resolver software

Distributed, Hierarchical
Database

  Client wants IP for www.amazon.com
  Client queries a root server to find com DNS server
  Client queries com DNS server to get amazon.com DNS server
  Client queries amazon.com DNS server to get IP address for

www.amazon.com

12

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

uiuc.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

CS 241 Copyright ©: University of Illinois CS 241 Staff

13

DNS Root"
  Located in Virginia, USA
  How do we make the root scale?

 Verisign, Dulles, VA

14

DNS Root Servers"
  13 root servers (see http://www.root-servers.org/)

  Labeled A through M
  Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

15

DNS Root Servers"
  13 root servers each replicated via any-casting (localized

routing for addresses)

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 37 other locations)

I Autonomica, Stockholm
(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

TLD and Authoritative Servers

  Top-level domain (TLD) servers
  Responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.
  Network Solutions maintains servers for com TLD
  Educause for edu TLD

  Authoritative DNS servers
  Organization’s DNS servers
  Provide authoritative hostname to IP mappings for

organization’s servers (e.g., Web, mail).
  Can be maintained by organization or service provider

16 CS 241 Copyright ©: University of Illinois CS 241 Staff

17

Local Name Server

  One per ISP (residential ISP, company, university)
  Also called “default name server”

  When host makes DNS query, query is sent to its
local DNS server
  Acts as proxy, forwards query into hierarchy
  Reduces lookup latency for commonly searched

hostnames

  Hosts learn local name server via...
  DHCP (same protocol that tells host its IP address)
  Static configuration (e.g., can use Google’s “local” name

service at 8.8.8.8 or 8.8.4.4)

CS 241 Copyright ©: University of Illinois CS 241 Staff

18

Applications’ use of DNS"
  Client application (e.g., web browser)

  Extract server name (e.g., from the URL)
  Do gethostbyname() to trigger resolver code,

sending message to local name server

  Server application (e.g. web server)
  Extract client IP address from socket
  Optional gethostbyaddr() to translate into name

DNS name
resolution example

  Host at cs.uiuc.edu
wants IP address for
gaia.cs.umass.edu

  Iterated query
  Contacted server

replies with name of
server to contact

  “I don’t know this
name, but ask this
server”

19

requesting host
cs.uiuc.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.uiuc.edu

1

2
3

4

5

6
authoritative
DNS server

7 8

TLD DNS
server

CS 241 Copyright ©: University of Illinois CS 241 Staff

dns.cs.umass.edu

DNS: Caching

  Once (any) name server learns
mapping, it caches mapping
  Cache entries timeout (disappear) after

some time
  TLD servers typically cached in local

name servers
  Thus root name servers not often visited

20 CS 241 Copyright ©: University of Illinois CS 241 Staff

Network Address Translation

Copyright © University of Illinois CS 241 Staff 21

NAT: Network Address
Translation

  Approach
  Assign one router a global IP address
  Assign internal hosts local IP addresses

  Change IP Headers
  IP addresses (and possibly port numbers) of IP datagrams

are replaced at the boundary of a private network
  Enables hosts on private networks to communicate with

hosts on the Internet
  Run on routers that connect private networks to the public

Internet

CS 241 Copyright ©: University of Illinois CS 241 Staff 22

NAT: Network Address
Translation

  Outgoing packet
  Source IP address (private IP) replaced by

global IP address maintained by NAT router
  Incoming packet

  Destination IP address (global IP of NAT
router) replaced by appropriate private IP
address

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

What address do the remote
hosts respond to?

NAT router caches translation
table:
(source IP address, port #) 
(NAT IP address, new port #)

NAT: Network Address
Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40, 80

NAT translation table
WAN side addr LAN side addr
138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80 2

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001

3
3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

CS 241 24 Copyright ©: University of Illinois CS 241 Staff

NAT: Benefits

  Local network uses just one (or a few) IP address
as far as outside world is concerned
  No need to be allocated range of addresses from ISP

  Just one IP address is used for all devices
  Or a few, in a large private enterprise network
  16-bit port-number field: 60,000 simultaneous connections with a

single LAN-side address!
  Can change addresses of devices in local network without

notifying outside world
  Can change ISP without changing addresses of devices in

local network
  Devices inside local net not explicitly addressable, visible

by outside world (a security plus)
CS 241 25 Copyright ©: University of Illinois CS 241 Staff

NAT: Benefits

  Load balancing
  Balance the load on a set of identical servers, which are

accessible from a single IP address

  NAT solution
  Servers are assigned private addresses
  NAT acts as a proxy for requests to the server from the

public network
  NAT changes the destination IP address of arriving

packets to one of the private addresses for a server
  Balances load on the servers by assigning addresses in a

round-robin fashion

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

NAT: Consequences

  End-to-end connectivity broken
  NAT destroys universal end-to-end reachability of hosts on

the Internet
  A host in the public Internet often cannot initiate

communication to a host in a private network
  Even worse when two hosts that are in different private

networks need to communicate with each other

CS 241 27 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

  Performance worsens
  Modifying the IP header by changing the IP address

requires that NAT boxes recalculate the IP header
checksum

  Modifying port number requires that NAT boxes
recalculate TCP checksum

  Fragmentation issues
  Datagrams fragmented before NAT device must not be

assigned different IP addresses or different port numbers

CS 241 28 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

  Broken if IP address in application data
  Applications often carry IP addresses in the payload of the

application data
  No longer work across a private-public network boundary
  Hack: Some NAT devices inspect the payload of widely

used application layer protocols and, if an IP address is
detected in the application-layer header or the application
payload, translate the address according to the address
translation table

CS 241 29 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

  Ossification of Internet protocols
  NAT must be aware of port numbers which are inside

transport header
  Existing NATs don’t support your fancy new transport

protocol
  and might even block standard protocols like UDP

  Result: Difficult to invent new transport protocols
  ...unless they just pretend to be TCP

CS 241 30 Copyright ©: University of Illinois CS 241 Staff

CS 241 Copyright ©: University of Illinois CS 241 Staff 31

Bonus slides

A UDP Server

  How can a UDP
server service
multiple ports
simultaneously?

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

UDP

IP

Ethernet Adapter

UDP Server

Port 2000 Port 3000

UDP Server: Servicing Two
Ports

int s1; /* socket descriptor 1 */
int s2; /* socket descriptor 2 */

/* 1) create socket s1 */
/* 2) create socket s2 */
/* 3) bind s1 to port 2000 */
/* 4) bind s2 to port 3000 */

while(1) {

 recvfrom(s1, buf, sizeof(buf), ...);
 /* process buf */
 recvfrom(s2, buf, sizeof(buf), ...);
 /* process buf */

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 33

What problems does
this code have?

CS 241 Copyright ©: University of Illinois CS 241 Staff 34

Building Timeouts with Select
and Poll

  Time structure

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */

};
unix will have its own "Y2K" problem one

second after 10:14:07pm, Monday January 18,
2038 (will appear to be 3:45:52pm, Friday

December 13, 1901)

Number of seconds since
midnight, January 1, 1970 GMT

CS 241 Copyright ©: University of Illinois CS 241 Staff 35

Select

  High-resolution sleep function
  All descriptor sets NULL
  Positive timeout

  Wait until descriptor(s) become ready
  At least one descriptor in set
  timeout NULL

  Wait until descriptor(s) become ready or timeout occurs
  At least one descriptor in set
  Positive timeout

  Check descriptors immediately (poll)
  At least one descriptor in set
  0 timeout

Which file descriptors
are set and what

should the timeout
value be?

CS 241 Copyright ©: University of Illinois CS 241 Staff 36

Select: Example

fd_set my_read;
FD_ZERO(&my_read);
FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {
 ASSERT(FD_ISSET(0, &my_read);
 /* data ready on stdin */ What went wrong:

after select indicates
data available on a
connection, read
returns no data?

Select: Timeout Example
int main(void) {

 struct timeval tv;
 fd_set readfds;

 tv.tv_sec = 2;
 tv.tv_usec = 500000;

 FD_ZERO(&readfds);
 FD_SET(STDIN, &readfds);

 // don't care about writefds and exceptfds:
 select(1, &readfds, NULL, NULL, &tv);

 if (FD_ISSET(STDIN, &readfds))
 printf("A key was pressed!\n");
 else

 printf("Timed out.\n");

 return 0;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 37

Wait 2.5 seconds for
something to appear

on standard input

CS 241 Copyright ©: University of Illinois CS 241 Staff 38

Poll

  High-resolution sleep function
  0 nfds
  Positive timeout

  Wait until descriptor(s) become ready
  nfds > 0
  timeout INFTIM or -1

  Wait until descriptor(s) become ready or timeout occurs
  nfds > 0
  Positive timeout

  Check descriptors immediately (poll)
  nfds > 0
  0 timeout

select() vs. poll()

Which to use?
  BSD-family (e.g., FreeBSD, MacOS)

  poll() just calls select() internally
  System V family (e.g., AT&T Unix)

  select() just calls poll() internally

CS 241 Copyright ©: University of Illinois CS 241 Staff 39

