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Network programming, DNS, 
and NAT 



Today 

  Network programming tips 
  Domain name system 
  Network Address Translation 
  Bonus slides (for your reference) 

  Timers with select() 
  select() vs. poll() 
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Tip #1: Can’t bind? 

  Problem: How come I get "address already 
in use" from bind()?  
  You have stopped your server, and then re-

started it right away 
  The sockets that were used by the first 

incarnation of the server are still active 
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setsockopt  

int yes = 1; 
setsockopt (fd, SOL_SOCKET, 

SO_REUSEADDR, (char *) &yes, sizeof 
(yes)); 
  Call just before bind() 
  Allows bind to succeed despite the existence of 

existing connections in the requested TCP port 
  Connections in limbo (e.g. lost final ACK) will 

cause bind to fail 



Tip #2: Dealing with abruptly 
closed connection 
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[demo: server.c] 
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signal  

  Problem: Socket at other end is closed 
  Write to your end generates SIGPIPE 
  This signal kills the program by default! 

signal (SIGPIPE, SIG_IGN); 
  Call at start of main in server 
  Allows you to ignore broken pipe signals 
  Can ignore or install a proper signal handler 
  Default handler exits (terminates process) 



Tip #3: Beej’s guide 

  Beej's Guide to Network Programming 

Copyright © University of Illinois CS 241 Staff 7 

http://beej.us/guide/bgnet/ 
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The Domain Name System"

Slides thanks in part to Jennifer Rexford, 
Ion Stoica, Vern Paxson, and Scott Shenker 
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Host Names vs. IP addresses"

  Host names 
  Mnemonic name appreciated by humans 
  Variable length, full alphabet of characters 
  Provide little (if any) information about physical location 
  Examples: www.cnn.com and bbc.co.uk 

  IP addresses 
  Numerical address appreciated by routers 
  Fixed length, binary number 
  Hierarchical, related to host location 
  Examples: 64.236.16.20 and 212.58.224.131 
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Separating Naming and 
Addressing"

  Names are easier to remember 
  cnn.com vs. 64.236.16.20 (but not shortened urls) 

  Addresses can change underneath 
  Move www.cnn.com to 4.125.91.21 
  E.g., renumbering when changing providers 

  Name could map to multiple IP addresses 
  www.cnn.com to multiple (8) replicas of the Web site 
  Enables 

  Load-balancing 
  Reducing latency by picking nearby servers 
  Tailoring content based on requester’s location/identity 

  Multiple names for the same address 
  E.g., aliases like www.cnn.com and cnn.com 



11 

Domain Name System (DNS)"

  Properties of DNS 
  Hierarchical name space divided into zones 
  Zones distributed over collection of DNS servers 

  Hierarchy of DNS servers 
  Root (hardwired into other servers) 
  Top-level domain (TLD) servers 
  Authoritative DNS servers 

  Performing the translations 
  Local DNS servers 
  Resolver software 



Distributed, Hierarchical 
Database 

  Client wants IP for www.amazon.com 
  Client queries a root server to find com DNS server 
  Client queries com DNS server to get amazon.com DNS server 
  Client queries amazon.com DNS server to get  IP address for 

www.amazon.com 
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Root DNS Servers 

com DNS servers org DNS servers edu DNS servers 

uiuc.edu 
DNS servers 

umass.edu 
DNS servers 

yahoo.com 
DNS servers 

amazon.com 
DNS servers 

pbs.org 
DNS servers 
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DNS Root"
  Located in Virginia, USA 
  How do we make the root scale? 

  Verisign, Dulles, VA 
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DNS Root Servers"
  13 root servers (see http://www.root-servers.org/) 

  Labeled A through M 
  Does this scale? 

B USC-ISI Marina del Rey, CA 
L ICANN Los Angeles, CA 

 

E NASA Mt View, CA 
F  Internet Software 
    Consortium  
    Palo Alto, CA 

I Autonomica, Stockholm 

K RIPE London 

M WIDE Tokyo 

A Verisign, Dulles, VA 
C Cogent, Herndon, VA 
D U Maryland College Park, MD 
G US DoD Vienna, VA 
H ARL Aberdeen, MD 
J Verisign 
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DNS Root Servers"
  13 root servers each replicated via any-casting (localized 

routing for addresses) 

B USC-ISI Marina del Rey, CA 
L ICANN Los Angeles, CA 

 

E NASA Mt View, CA 
F  Internet Software 
    Consortium, 
    Palo Alto, CA 
   (and 37 other locations) 

 

I Autonomica, Stockholm 
(plus 29 other locations) 

K RIPE London (plus 16 other locations) 

M WIDE Tokyo 
 plus Seoul, Paris, 
 San Francisco 

A Verisign, Dulles, VA 
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago) 
D U Maryland College Park, MD 
G US DoD Vienna, VA 
H ARL Aberdeen, MD 
J Verisign (21 locations) 

 



TLD and Authoritative Servers 

  Top-level domain (TLD) servers 
  Responsible for com, org, net, edu, etc, and all top-level 

country domains uk, fr, ca, jp. 
  Network Solutions maintains servers for com TLD 
  Educause for edu TLD 

  Authoritative DNS servers 
  Organization’s DNS servers 
  Provide authoritative hostname to IP mappings for 

organization’s servers (e.g., Web, mail). 
  Can be maintained by organization or service provider 
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Local Name Server 

  One per ISP (residential ISP, company, university) 
  Also called “default name server” 

  When host makes DNS query, query is sent to its 
local DNS server 
  Acts as proxy, forwards query into hierarchy 
  Reduces lookup latency for commonly searched 

hostnames 

  Hosts learn local name server via... 
  DHCP (same protocol that tells host its IP address) 
  Static configuration (e.g., can use Google’s “local” name 

service at 8.8.8.8 or 8.8.4.4) 
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Applications’ use of DNS"
  Client application (e.g., web browser) 

  Extract server name (e.g., from the URL) 
  Do gethostbyname() to trigger resolver code, 

sending message to local name server 

  Server application (e.g. web server) 
  Extract client IP address from socket 
  Optional gethostbyaddr() to translate into name 



DNS name  
resolution example 

  Host at cs.uiuc.edu 
wants IP address for 
gaia.cs.umass.edu 

  Iterated query 
  Contacted server 

replies with name of 
server to contact 

  “I don’t know this 
name, but ask this 
server” 
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requesting host 
cs.uiuc.edu 

gaia.cs.umass.edu 

root DNS server 

local DNS server 
dns.uiuc.edu 

1 

2 
3 

4 

5 

6 
authoritative 
DNS server 

7 8 

TLD DNS 
server 
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dns.cs.umass.edu 



DNS: Caching 

  Once (any) name server learns 
mapping, it caches mapping 
  Cache entries timeout (disappear) after 

some time 
  TLD servers typically cached in local 

name servers 
  Thus root name servers not often visited 
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Network Address Translation 
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NAT: Network Address 
Translation 

  Approach 
  Assign one router a global IP address 
  Assign internal hosts local IP addresses 

  Change IP Headers 
  IP addresses (and possibly port numbers) of IP datagrams 

are replaced at the boundary of a private network 
  Enables hosts on private networks to communicate with 

hosts on the Internet 
  Run on routers that connect private networks to the public 

Internet 
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NAT: Network Address 
Translation 

  Outgoing packet  
  Source IP address (private IP) replaced by 

global IP address maintained by NAT router 
  Incoming packet 

  Destination IP address (global IP of NAT 
router) replaced by appropriate private IP 
address 
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What address do the remote 
hosts respond to? 

NAT router caches translation 
table:  
(source IP address, port #)    
(NAT IP address, new port #) 



NAT: Network Address 
Translation 

10.0.0.1 

10.0.0.2 

10.0.0.3 

S: 10.0.0.1, 3345 
D: 128.119.40.186, 80 

1 
10.0.0.4 

138.76.29.7 

1: host 10.0.0.1  
sends datagram to  
128.119.40, 80 

NAT translation table 
WAN side addr        LAN side addr 
138.76.29.7, 5001   10.0.0.1, 3345 
……                                         …… 

S: 128.119.40.186, 80  
D: 10.0.0.1, 3345 
 

4 

S: 138.76.29.7, 5001 
D: 128.119.40.186, 80 2 

2: NAT router 
changes datagram 
source addr from 
10.0.0.1, 3345 to 
138.76.29.7, 5001, 
updates table 

S: 128.119.40.186, 80  
D: 138.76.29.7, 5001 
 

3 
3: Reply arrives 
 dest. address: 
 138.76.29.7, 5001 

4: NAT router 
changes datagram 
dest addr from 
138.76.29.7, 5001 to 10.0.0.1, 3345  
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NAT: Benefits 

  Local network uses just one (or a few) IP address 
as far as outside world is concerned 
  No need to be allocated range of addresses from ISP 

  Just one IP address is used for all devices 
  Or a few, in a large private enterprise network 
  16-bit port-number field: 60,000 simultaneous connections with a 

single LAN-side address! 
  Can change addresses of devices in local network without 

notifying outside world 
  Can change ISP without changing addresses of devices in 

local network 
  Devices inside local net not explicitly addressable, visible 

by outside world (a security plus) 
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NAT: Benefits 

  Load balancing 
  Balance the load on a set of identical servers, which are 

accessible from a single IP address  

  NAT solution 
  Servers are assigned private addresses  
  NAT acts as a proxy for requests to the server from the 

public network 
  NAT changes the destination IP address of arriving 

packets to one of the private addresses for a server 
  Balances load on the servers by assigning addresses in a 

round-robin fashion 
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NAT: Consequences 

  End-to-end connectivity broken 
  NAT destroys universal end-to-end reachability of hosts on 

the Internet 
  A host in the public Internet often cannot initiate 

communication to a host in a private network 
  Even worse when two hosts that are in different private 

networks need to communicate with each other 
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NAT: Consequences 

  Performance worsens 
  Modifying the IP header by changing the IP address 

requires that NAT boxes recalculate the IP header 
checksum 

  Modifying port number requires that NAT boxes 
recalculate TCP checksum 

  Fragmentation issues 
  Datagrams fragmented before NAT device must not be 

assigned different IP addresses or different port numbers 
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NAT: Consequences 

  Broken if IP address in application data 
  Applications often carry IP addresses in the payload of the 

application data  
  No longer work across a private-public network boundary 
  Hack: Some NAT devices inspect the payload of widely 

used application layer protocols and, if an IP address is 
detected in the application-layer header or the application 
payload, translate the address according to the address 
translation table 
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NAT: Consequences 

  Ossification of Internet protocols 
  NAT must be aware of port numbers which are inside 

transport header 
  Existing NATs don’t support your fancy new transport 

protocol 
  and might even block standard protocols like UDP 

  Result: Difficult to invent new transport protocols 
  ...unless they just pretend to be TCP 

CS 241 30 Copyright ©: University of Illinois CS 241 Staff 



CS 241 Copyright ©: University of Illinois CS 241 Staff 31 

Bonus slides 



A UDP Server 

  How can a UDP 
server service 
multiple ports 
simultaneously? 
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UDP 

IP 

Ethernet Adapter 

UDP Server 

Port 2000 Port 3000 



UDP Server: Servicing Two 
Ports  

int s1;    /* socket descriptor 1 */ 
int s2;    /* socket descriptor 2 */ 
 
/* 1) create socket s1 */ 
/* 2) create socket s2 */ 
/* 3) bind s1 to port 2000 */ 
/* 4) bind s2 to port 3000 */ 
 
while(1) { 

 recvfrom(s1, buf, sizeof(buf), ...); 
 /* process buf */ 
 recvfrom(s2, buf, sizeof(buf), ...); 
 /* process buf */ 

} 
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What problems does 
this code have? 
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Building Timeouts with Select 
and Poll 

  Time structure 
 
 
struct timeval { 
 long tv_sec;   /* seconds */ 
 long tv_usec;  /* microseconds */ 

}; 
unix will have its own "Y2K" problem one 

second after 10:14:07pm, Monday January 18, 
2038 (will appear to be 3:45:52pm, Friday 

December 13, 1901) 

Number of seconds since 
midnight, January 1, 1970 GMT 
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Select 

  High-resolution sleep function 
  All descriptor sets NULL 
  Positive timeout 

  Wait until descriptor(s) become ready 
  At least one descriptor in set 
  timeout NULL 

  Wait until descriptor(s) become ready or timeout occurs 
  At least one descriptor in set 
  Positive timeout 

  Check descriptors immediately (poll) 
  At least one descriptor in set 
  0 timeout 

Which file descriptors 
are set and what 

should the timeout 
value be? 
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Select: Example 

fd_set my_read; 
FD_ZERO(&my_read); 
FD_SET(0, &my_read); 
 
if (select(1, &my_read, NULL, NULL) == 1) { 
 ASSERT(FD_ISSET(0, &my_read); 
 /* data ready on stdin */ What went wrong: 

after select indicates 
data available on a 
connection, read 
returns no data? 



Select: Timeout Example 
int main(void) { 

 struct timeval tv; 
 fd_set readfds; 

 

 tv.tv_sec = 2; 
 tv.tv_usec = 500000; 

 

 FD_ZERO(&readfds); 
 FD_SET(STDIN, &readfds); 

 

 // don't care about writefds and exceptfds: 
 select(1, &readfds, NULL, NULL, &tv); 

 

 if (FD_ISSET(STDIN, &readfds)) 
  printf("A key was pressed!\n"); 
 else 

  printf("Timed out.\n"); 
 

 return 0; 

} 
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Wait 2.5 seconds for 
something to appear 

on standard input 
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Poll 

  High-resolution sleep function 
  0 nfds 
  Positive timeout 

  Wait until descriptor(s) become ready 
  nfds > 0 
  timeout INFTIM or -1 

  Wait until descriptor(s) become ready or timeout occurs 
  nfds > 0 
  Positive timeout 

  Check descriptors immediately (poll) 
  nfds > 0 
  0 timeout 



select() vs. poll() 

Which to use? 
  BSD-family (e.g., FreeBSD, MacOS) 

  poll() just calls select() internally 
  System V family (e.g., AT&T Unix) 

  select() just calls poll() internally 
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