Signals (continued)

CS 24|

April 9, 2012

A signal is an asynchronous notification of an event
* Asynchronous: could occur at any time
* Interrupts receiving process; jumps to signal handler in that process

* A (limited) menu of event types to pick from

What events could be asynchronous!?
* Email message arrives on my machine
= Mailing agent (user) process should retrieve it
* Invalid memory access
= OS should inform scheduler to remove process from the processor
* Alarm clock goes off

= Process which sets the alarm should catch it

| Generate Kernel 3.. Deliver
a signal signal
Process | Process 2

2. Kernel
state

. (.;enerate Kernel 3.. Deliver
a signal signal

Process | Process 2

2. Kernel
state

Generating a signal

Generated by a process with syscall kill(pid, signal)

e Sends signal to process pid
* Poorly named: sends any signal, not just SIGKILL

Generated by the kernel, when...
* a child process exits or is stops (SIGCHLD)

* floating point exception, e.g. div. by zero (SIGFPE)
* bad memory access (SIGSEGV)

Signals from the command line: kill

kill -1

* Lists the signals the system understands
kill [-signal] pid

* Sends signal to the process with ID pid

* Optional argument S1gnal may be a name or a number (default is
SIGTERM)

kill -9 pid or kill -KILL pidor kill -SIGKILL pid

* Unconditionally terminates process p1d

Signals in the interactive terminal

Control-C is SIGINT

* Interactive attention signal

Control-Z is SIGSTOP

* Execution stopped — cannot be ignored

Control-Y is SIGCONT

* Execution continued if stopped

Control-\ is SIGQUIT

* Interactive termination: core dump

A program can signal itself

Similar to raising an exception
O raise(signal) or
Okill (getpid(), signal)

Or can signal after a delay
Ounsigned alarm(unsigned seconds) ;
O Calls are not stacked
B any previously set alarm () is cancelled
O alarm(20)
m Send SIGALRM to calling process after 20 seconds
Oalarm(0)
B cancels current alarm

Example: What does this do?

int main(void) {
alarm(10);
while(l);

Example of program signaling itself
“Infinite” loop for 10 seconds

Then interrupted by alarm

* Doesn’t matter that While loop is still looping
* No signal handler set by program; default action: terminate

Morbid example

#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
while (1) {
if (fork())
sleep(30);
else
kill(getppid(), SIGKILL);

What does this do?

|. Generate
a signal

Kernel

3. Deliver
signal

Process |

2. Kernel state

Process 2

Kernel state

A signal is related to a specific process

In the process’s PCB (process control block), kernel stores
* Set of pending signals
= Generated but not yet delivered
* Set of blocked signals
= Will stay pending
= Delivered after unblocked (if ever)
* An action for each signal type
= What to do to deliver the signal

Kernel signaling procedure

Signal arrives
* Set pending bit for this signal
* Only one bit per signal type!

Ready to be delivered

* Pick a pending, non-blocked signal and execute the associated action —
one of:

= Ignore
= Kill process

= Execute signal handler specified by process

|. Generate
a signal

Kernel

3. Deliver
signal

Process |

2. Kernel state

Process 2

Delivering a signal

Kernel may handle it
* Not delivered to target program at all!
* SIGSTOP, SIGKILL
* Target process can’t handle these

* They are really messages to the kernel about a process, rather than
messages to a process

But for most signals, target process handles it (if it wants)

If process handles the signal...

Process

Mask

Signal Generated

ignal delivered Signal Caught by handler

—
if signal not blocked

by signal mask... Signal Handler
Mask
ha
Return from Signal Handler
Mask

Process Resumes

Temporarily prevents select types of signals from being

delivered

* Implemented as a bit array

* Same as kernel’s representation of pending and blocked signals

Sigint

SigQuit

SigKill

SigCont

SigAbrt

0

Signal mask example

Block all signals:

sigset_t sigs;
sigfillset(&sigs);
sigprocmask(SIG_SETMASK, &sigs, NULL);

Instead of sigfillset, you might try:
* sigemptyset
* sigaddset
* sigdelset

* sigismember

If it's not masked, we handle 1t

Three ways to handle
* lIgnore it
= Different than blocking!
* Kill process

* Run specified signal handler function

One of these is the default
* Depends on signal type

Tell the kernel what we want to do: signal() or sigaction()

sigaction

#include <signal.h>

int sigaction(int signum,
const struct sigaction * act,
struct sigaction * oldact);

Changes the action taken by a process when it receives a
specific signal

Notes

* s1gnumis any valid signal except SIGKILL and SIGSTOP
* [f act is non-null, new action is installed from act

* If oldact is non-null, previous action is saved in 0 Ldact

20

Example: Catch SIGINT

#include <stdio.h>
#include <signal.h>

void handle(int sig) {

int

char handmsg[] = "Ha! Handled!!!\n";
int msglen = sizeof(handmsg);
write(2, handmsg, msglen);

main(int argc, char** argv) {

struct sigaction sa;

sa.sa_handler = handle; /* the handler function!! */
sa.sa_flags = 0;

sigemptyset(&sa.sa_mask); /* block all signals during handler */

sigaction(SIGINT, &sa, NULL); Note: Need to

while (1) { check for error
printf("Fish.\n"); conditions in all
sleep(l); these system &

} library calls!

21

Potentially unexpected behavior

Inside kernel, only one pending signal of each type at a time

* If another arrives while first one still pending, second is lost

What's an interesting thing that could happen during a signal
handler?
* Another signal arrives!
* Need to either
= Write code that does not assume mutual exclusion, or

= Block signals during signal handler (signal() and sigaction() can do
this for you)

22

How to catch without catching

Can wait for a signal

* No longer an asynchronous event, so no handler!

First block all signals

Then call sigsuspend() or sigwait()

* Atomically unblocks signals and waits until signal occurs
* Looks a lot like condition variables, eh?

= cond_wait() unlocks mutex and waits till condition occurs

23

Puzzle:
Using signals to send
a stream of data

