
1

Signals (continued)

CS 241

April 9, 2012

University of Illinois

2

Signals

A signal is an asynchronous notification of an event
•  Asynchronous: could occur at any time
•  Interrupts receiving process; jumps to signal handler in that process
•  A (limited) menu of event types to pick from

What events could be asynchronous?
•  Email message arrives on my machine

  Mailing agent (user) process should retrieve it
•  Invalid memory access

  OS should inform scheduler to remove process from the processor
•  Alarm clock goes off

  Process which sets the alarm should catch it

3

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

4

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

5

Generating a signal

Generated by a process with syscall kill(pid, signal)	
•  Sends signal to process pid	
•  Poorly named: sends any signal, not just SIGKILL

Generated by the kernel, when...
•  a child process exits or is stops (SIGCHLD)
•  floating point exception, e.g. div. by zero (SIGFPE)
•  bad memory access (SIGSEGV)
•  ...

6

Signals from the command line: kill

kill -l 	
•  Lists the signals the system understands

kill [-signal] pid 	
•  Sends signal to the process with ID pid	
•  Optional argument signal may be a name or a number (default is

SIGTERM)

kill -9 pid or kill -KILL pid or kill -SIGKILL pid	
•  Unconditionally terminates process pid	

7

Signals in the interactive terminal

Control-C is SIGINT
•  Interactive attention signal

Control-Z is SIGSTOP
•  Execution stopped – cannot be ignored

Control-Y is SIGCONT
•  Execution continued if stopped

Control-\ is SIGQUIT
•  Interactive termination: core dump

8

A program can signal itself

 Similar to raising an exception
 raise(signal) or
 kill(getpid(), signal)

 Or can signal after a delay
 unsigned alarm(unsigned seconds);
 Calls are not stacked

  any previously set alarm() is cancelled
 alarm(20)

  Send SIGALRM to calling process after 20 seconds
 alarm(0)

  cancels current alarm

9

Example: What does this do?

Example of program signaling itself

“Infinite” loop for 10 seconds

Then interrupted by alarm
•  Doesn’t matter that while loop is still looping
•  No signal handler set by program; default action: terminate

int main(void) {  
 alarm(10);  
 while(1);  
}

10

Morbid example

#include <stdlib.h>  
#include <signal.h>  
 
int main(int argc, char** argv) {  
 while (1) {  
 if (fork())  
 sleep(30);  
 else  
 kill(getppid(), SIGKILL);  
 }  
}  

What does this do?

11

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel state

3. Deliver
signal

12

Kernel state

A signal is related to a specific process

In the process’s PCB (process control block), kernel stores
•  Set of pending signals

  Generated but not yet delivered
•  Set of blocked signals

  Will stay pending
  Delivered after unblocked (if ever)

•  An action for each signal type
  What to do to deliver the signal

13

Kernel signaling procedure

Signal arrives
•  Set pending bit for this signal
•  Only one bit per signal type!

Ready to be delivered
•  Pick a pending, non-blocked signal and execute the associated action –

one of:
  Ignore
  Kill process
  Execute signal handler specified by process

14

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel state

3. Deliver
signal

15

Delivering a signal

Kernel may handle it
•  Not delivered to target program at all!
•  SIGSTOP, SIGKILL
•  Target process can’t handle these
•  They are really messages to the kernel about a process, rather than

messages to a process

But for most signals, target process handles it (if it wants)

16

If process handles the signal...

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

17

Signal mask

Temporarily prevents select types of signals from being
delivered

•  Implemented as a bit array
•  Same as kernel’s representation of pending and blocked signals

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0

18

Signal mask example

Block all signals:

Instead of sigfillset, you might try:
•  sigemptyset
•  sigaddset
•  sigdelset
•  sigismember

sigset_t sigs;  
sigfillset(&sigs);  
sigprocmask(SIG_SETMASK, &sigs, NULL);

19

If it’s not masked, we handle it

Three ways to handle
•  Ignore it

  Different than blocking!
•  Kill process
•  Run specified signal handler function

One of these is the default
•  Depends on signal type

Tell the kernel what we want to do: signal() or sigaction()	

20

sigaction

Changes the action taken by a process when it receives a
specific signal

Notes
•  signum is any valid signal except SIGKILL and SIGSTOP
•  If act is non-null, new action is installed from act	
•  If oldact is non-null, previous action is saved in oldact

#include <signal.h>  
 
int sigaction(int signum,	
 const struct sigaction * act,	
 struct sigaction * oldact);

21

Example: Catch SIGINT
#include <stdio.h>  
#include <signal.h>  
 
void handle(int sig) {  
 char handmsg[] = "Ha! Handled!!!\n";  
 int msglen = sizeof(handmsg);  
 write(2, handmsg, msglen);  
}	
 
int main(int argc, char** argv) {	
 struct sigaction sa;	
 sa.sa_handler = handle; /* the handler function!! */	
 sa.sa_flags = 0;	
 sigemptyset(&sa.sa_mask); /* block all signals during handler */	
	
 sigaction(SIGINT, &sa, NULL);	
 
 while (1) {  
 printf("Fish.\n");  
 sleep(1);  
 }  
}

Note: Need to
check for error
conditions in all
these system &

library calls!

22

Potentially unexpected behavior

Inside kernel, only one pending signal of each type at a time
•  If another arrives while first one still pending, second is lost

What’s an interesting thing that could happen during a signal
handler?

•  Another signal arrives!
•  Need to either

  Write code that does not assume mutual exclusion, or
  Block signals during signal handler (signal() and sigaction() can do

this for you)

23

How to catch without catching

Can wait for a signal
•  No longer an asynchronous event, so no handler!

First block all signals

Then call sigsuspend() or sigwait()	
•  Atomically unblocks signals and waits until signal occurs
•  Looks a lot like condition variables, eh?

  cond_wait() unlocks mutex and waits till condition occurs

24

Puzzle:
Using signals to send

a stream of data

