
1

Select and poll
and Signals

CS 241

April 6, 2012

University of Illinois

2

Review: Interprocess communication

Shared address space
•  Shared memory
•  Memory mapped files

Via OS
•  Files
•  Pipes
•  FIFOs (named pipes): Review today
•  Signals: New today

3

SurveyMonkey

4

Review: FIFOs and dup()

How could we read from a FIFO as if it were stdin?

#include <stdio.h>  
#include <stdlib.h>  
#include <fcntl.h>  
 
int main(int argc, char** argv) {	
 mkfifo(argv[1], S_IRWXU | S_IRWXG | S_IRWXO);  
	
 int fifo = open(argv[1], O_RDONLY);  
	
 dup2(fifo, 0); /* 0 is the file descriptor of stdin */  
	
 char line[1024];  
 while (fgets(line, 1024, stdin))  
 printf("I got this: %s\n", line);  
}

pipestdin.c

5

Select & Poll

6

Waiting for any one of a set of inputs

Examples
•  Multiple children to compute in parallel; wait for output from any
•  Network server connected to many clients; take action as soon as any

one of them sends data

Problem
•  Can use read / write scanf, but problem?
•  Blocks waiting for that one file, even if another has data ready & waiting!

Solution
•  Need a way to wait for any one of a set of events to happen
•  Something similar to wait() to wait for any child to finish, but for events

on file descriptors

7

Select and Poll: Waiting for input

Similar parameters
•  Set of file descriptors
•  Set of events for each descriptor
•  Timeout length

Similar return value
•  Set of file descriptors
•  Events for each descriptor

Notes
•  Select is slightly simpler
•  Poll supports waiting for more event types
•  Newer variant available on some systems: epoll

8

Select

int select (int num_fds, fd_set* read_set,

 fd_set* write_set, fd_set* except_set,

 struct timeval* timeout);

Wait for readable/writable file descriptors.

Return:
•  Number of descriptors ready
•  -1 on error, sets errno

Parameters:
•  num_fds:

  number of file descriptors to check, numbered from 0
•  read_set, write_set, except_set:

  Sets (bit vectors) of file descriptors to check for the specific condition
•  timeout:

  Time to wait for a descriptor to become ready

9

File Descriptor Sets

Bit vectors
•  Often 1024 bits, only first num_fds checked
•  Macros to create and check sets

fds_set myset;
void FD_ZERO(&myset); /* clear all bits */
void FD_SET(n, &myset); /* set bits n to 1 */
void FD_CLEAR(n, &myset); /* clear bit n */
int FD_ISSET(n, &myset); /* is bit n set? */

10

File Descriptor Sets

Three conditions to check for
•  Readable

  Data available for reading
•  Writable

  Buffer space available for writing
•  Exception

  Out-of-band data available (TCP)

11

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

 ASSERT(FD_ISSET(0, &my_read);

 /* data ready on stdin */

12

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int timeout);

Poll file descriptors for events.

Return:
•  Number of descriptors with events
•  -1 on error, sets errno

Parameters:
•  pfds:

  An array of descriptor structures. File descriptors, desired events and returned events
•  nfds:

  Length of the pfds array
•  timeout:

  Timeout value in milliseconds

13

Descriptors

Structure
struct pollfd {

 int fd; /* file descriptor */

 short events; /* queried event bit mask */

 short revents; /* returned event mask */

Note:
•  Any structure with fd < 0 is skipped

14

Event Flags

POLLIN:
•  data available for reading

POLLOUT:
•  Buffer space available for writing

POLLERR:
•  Descriptor has error to report

POLLHUP:
•  Descriptor hung up (connection closed)

POLLVAL:
•  Descriptor invalid

15

Poll: Example

struct pollfd my_pfds[1];

my_pfds[0].fd = 0;

my_pfds[0].events = POLLIN;

if (poll(&my_pfds, 1, INFTIM) == 1) {

 ASSERT (my_pfds[0].revents & POLLIN);

 /* data ready on stdin */

16

Signals

17

Signals

A signal is an asynchronous notification of an event
•  Asynchronous: could occur at any time
•  Interrupts receiving process; jumps to signal handler in that process
•  A (limited) menu of event types to pick from

What events could be asynchronous?
•  Email message arrives on my machine

  Mailing agent (user) process should retrieve it
•  Invalid memory access

  OS should inform scheduler to remove process from the processor
•  Alarm clock goes off

  Process which sets the alarm should catch it

18

Signaling overview

Process 1 Process 2

CHLD, SEGV, ...

Kernel 1. Generate
a signal

2. Kernel
state

3. Deliver
signal

19

Signaling: Inside Process 2

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

20

Example: Catch SIGINT
#include <stdio.h>  
#include <signal.h>  
 
void handle(int sig) {  
 char handmsg[] = "Ha! Handled!!!\n";  
 int msglen = sizeof(handmsg);  
 write(2, handmsg, msglen);  
}	
 
int main(int argc, char** argv) {	
 struct sigaction sa;	
 sa.sa_handler = handle; /* the handler function!! */	
 sa.sa_flags = 0;	
 sigemptyset(&sa.sa_mask);	
	
 sigaction(SIGINT, &sa, NULL);	
 
 while (1) {  
 printf("Fish.\n");  
 sleep(1);  
 }  
}

Note: Need to
check for error
conditions in all
these system &

library calls!

Run Demo

21

Some POSIX signals (see signal.h)

NAME Default Action Description  
SIGHUP terminate process terminal line hangup  
SIGINT terminate process interrupt program	
SIGQUIT create core image quit program  
SIGILL create core image illegal instruction  
SIGTRAP create core image trace trap  
SIGABRT create core image abort(3) call (formerly SIGIOT)  
SIGEMT create core image emulate instruction executed  
SIGFPE create core image floating-point exception	
SIGKILL terminate process kill program  
SIGBUS create core image bus error	
SIGSEGV create core image segmentation violation	
SIGSYS create core image non-existent system call invoked  
SIGPIPE terminate process write on a pipe with no reader  
SIGALRM terminate process real-time timer expired	
SIGTERM terminate process software termination signal  
SIGURG discard signal urgent condition present on socket  
SIGSTOP stop process stop (cannot be caught or ignored)  
SIGTSTP stop process stop signal generated from keyboard  
SIGCONT discard signal continue after stop

22

Some POSIX signals (see signal.h)

NAME Default Action Description  
SIGCHLD discard signal child status has changed  
SIGTTIN stop process background read attempted  
SIGTTOU stop process background write attempted  
SIGIO discard signal I/O is possible on a descriptor  
SIGXCPU terminate process cpu time limit exceeded  
SIGXFSZ terminate process file size limit exceeded  
SIGVTALRM terminate process virtual time alarm  
SIGPROF terminate process profiling timer alarm  
SIGWINCH discard signal Window size change  
SIGINFO discard signal status request from keyboard  
SIGUSR1 terminate process User defined signal 1	
SIGUSR2 terminate process User defined signal 2	
SIGWAKE start process Wake upon reaching end of long,	
 boring list of signals	

23

A little puzzle

Signals are a kind of interprocess communication

Q: Difference between signals and pipes or shared memory?

A:
•  Asynchronous notification
•  Doesn’t send a “message” as such; just a signal number
•  Puzzle: Then how could I do this.....?

Run demo

