
1

Interprocess Communication

CS 241

April 2, 2012

University of Illinois

2

Interprocess Communciation

What is IPC?
•  Mechanisms to transfer data between processes

Why is it needed?
•  Not all important procedures can be easily built in a single

process

3

Two kinds of IPC
“Mind meld” “Intermediary”

Process

OS

Process

Shared address space
•  Shared memory
•  Memory mapped files

Message transported by OS
from one address space to
another

•  Files
•  Pipes
•  FIFOs Today

4

Pipes

photo: autowitch
http://www.flickr.com/photos/autowitch/2098428964/

5

Google Chrome architecture (figure
borrowed from Google)

Separate processes for
browser tabs to protect
the overall application
from bugs and glitches in
the rendering engine

Restricted access from
each rendering engine
process to others and to
the rest of the system ht

tp
s:/

/si
te

s.g
oo

gle
.co

m
/a

/ch
ro

m
ium

.o
rg

/d
ev

/d
ev

elo
pe

rs
/d

es
ign

-d
oc

um
en

ts/
m

ult
i-p

ro
ce

ss
-a

rc
hit

ec
tu

re

6

Google Chrome architecture (figure
borrowed from Google)

A named pipe is
allocated for each
renderer process for
communication with the
browser process

Pipes are used in
asynchronous mode to
ensure that neither end
is blocked waiting for
the other

ht
tp

s:/
/si

te
s.g

oo
gle

.co
m

/a
/ch

ro
m

ium
.o

rg
/d

ev
/d

ev
elo

pe
rs

/d
es

ign
-d

oc
um

en
ts/

m
ult

i-p
ro

ce
ss

-a
rc

hit
ec

tu
re

7

Process A

msg msg msg msg msg msg
msg

msg
msg

msg msg
msg

msg
msg

msg

Process B
Operating

System

private address
space

private address
space

photo: theilr
http://www.flickr.com/photos/theilr/4283377543/

8

UNIX Pipes

#include <unistd.h>

int pipe(int fildes[2]);

 Create a message pipe
 Anything can be written to the pipe, and read from the other end
 Data is received in the order it was sent
 OS enforces mutual exclusion: only one process at a time
 Accessed by a file descriptor, like an ordinary file
 Processes sharing the pipe must have same parent process

 Returns a pair of file descriptors
 fildes[0] is the read end of the pipe
 fildes[1] is the write end of the pipe

9

Pipe example

#include <stdio.h>	
#include <stdlib.h>  
#include <errno.h>  
#include <sys/types.h>  
#include <unistd.h>  
 
int main(void) {  
 ...	
}  
 

10

Pipe example

int main(void) {  
 int pfds[2];  
 char buf[30];  
 
 pipe(pfds);  
 
 if (!fork()) {  
 printf(" CHILD: writing to pipe\n");  
 write(pfds[1], "test", 5);  
 printf(" CHILD: exiting\n");	
	
 } else {  
 printf("PARENT: reading from pipe\n");  
 read(pfds[0], buf, 5);  
 printf("PARENT: read \"%s\"\n", buf);  
 wait(NULL);  
 }  
 
 return 0;  
}

pfds[0]: read end of pipe
pfds[1]: write end of pipe

11

A pipe dream

ls | wc -l	

Can we implement a command-line pipe
with pipe()?

How do we attach the stdout of ls
to the stdin of wc?

12

Duplicating a file descriptor

#include <unistd.h>

int dup(int oldfd);

Create a copy of an open file descriptor

Put new copy in first unused file descriptor

Returns:
•  Return value ≥ 0 : Success. Returns new file descriptor
•  Return value = -1: Error. Check value of errno

Parameters:
•  oldfd: the open file descriptor to be duplicated

13

Duplicating a file descriptor

#include <unistd.h>

int dup2(int oldfd, int newfd);

Create a copy of an open file descriptor

Put new copy in specified location
•  ...after closing newfd, if it was open

Returns:
•  Return value ≥ 0 : Success. Returns new file descriptor
•  Return value = -1: Error. Check value of errno

Parameters:
•  oldfd: the open file descriptor to be duplicated

14

Pipe dream come true: ls | wc –l
#include <stdio.h>  
#include <stdlib.h>  
#include <unistd.h>  
 
int main(void) {  
 int pfds[2];  
 
 pipe(pfds);  
 
 if (!fork()) {  
 close(1); /* close stdout */  
 dup(pfds[1]); /* make stdout pfds[1] */  
 close(pfds[0]); /* don't need this */  
 execlp("ls", "ls", NULL);  
 } else {  
 close(0); /* close stdin */  
 dup(pfds[0]); /* make stdin pfds[0] */  
 close(pfds[1]); /* don't need this */  
 execlp("wc", "wc", "-l", NULL);  
 }  
 return 0;  
}

Run demo

15

Pipe dream come true: ls | wc –l

0

Parent
file descriptor

table

stdin
1 stdout
2

3

pfds[0]

pfds[1]
pipe

pipe(pfds);

16

Pipe dream come true: ls | wc –l

0

Child
file descriptor

table

1
2

3

0

Parent
file descriptor

table

stdin
1 stdout
2

3

pfds[0]

pfds[1]
pipe

pipe(pfds);  
fork();	

17

Pipe dream come true: ls | wc –l

0

Child
file descriptor

table

1
2

3

0

Parent
file descriptor

table

stdin
1 stdout
2

3

pfds[0]

pfds[1]
pipe

pipe(pfds);  
fork();	
	
close(0);	 close(1);	

18

Pipe dream come true: ls | wc –l

0

Child
file descriptor

table

1
2

3

0

Parent
file descriptor

table

stdin
1 stdout
2

3

pfds[0]

pfds[1]
pipe

pipe(pfds);  
fork();	
	
close(0);	
dup(pfds[0]);	

close(1);	
dup(pfds[1]);

19

Pipe dream come true: ls | wc –l

0

Child
file descriptor

table

1
2

3

0

Parent
file descriptor

table

stdin
1 stdout
2

3

pfds[0]

pfds[1]
pipe

pipe(pfds);  
fork();	
	
close(0);	
dup(pfds[0]);	
close(pfds[1]);	
execlp("wc", "wc", "-l", NULL);	

close(1);	
dup(pfds[1]);  
close(pfds[0]);	
execlp("ls", "ls", NULL);

20

FIFOs

21

FIFOs

A pipe disappears when no process has it open

FIFOs = named pipes
•  Special pipes that persist even after all the processes have closed them
•  Actually implemented as a file

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done", /* mode=0644 */
 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

22

Communication Over a FIFO

First open blocks until second process opens the FIFO

Can use O_NONBLOCK flag to make operations non-blocking

FIFO is persistent : can be used multiple times

Like pipes, OS ensures atomicity of writes and reads

OS address
space

Process A Process B

Private
address
space

Private
address
space

23

FIFO Example: Producer-Consumer

Producer
•  Writes to FIFO

Consumer
•  Reads from FIFO
•  Outputs data to file

FIFO ensures atomicity of write

24

FIFO Example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"

int main (int argc, char *argv[]) {
 int requestfd;

 if (argc != 2) { /* name of consumer fifo on the command line */
 fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);
 return 1;
 }

25

FIFO Example

 /* create a named pipe to handle incoming requests */
 if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)
 && (errno != EEXIST))
 {
 perror("Server failed to create a FIFO");
 return 1;
 }

 /* open a read/write communication endpoint to the pipe */
 if ((requestfd = open(argv[1], O_RDWR)) == -1) {
 perror("Server failed to open its FIFO");
 return 1;
 }
 /* Write to pipe like you would to a file */
 ...
}

26

What if there are multiple producers?

Examples
•  Multiple children to compute in parallel; wait for output from any
•  Network server connected to many clients; take action as soon as any

one of them sends data

Problem
•  Can use read / write scanf, but problem?
•  Blocks waiting for that one file, even if another has data ready & waiting!

Solution
•  Need a way to wait for any one of a set of events to happen
•  Something similar to wait() to wait for any child to finish, but for events

on file descriptors

27

Select & Poll

28

Select and Poll: Waiting for input

Similar parameters
•  Set of file descriptors
•  Set of events for each descriptor
•  Timeout length

Similar return value
•  Set of file descriptors
•  Events for each descriptor

Notes
•  Select is slightly simpler
•  Poll supports waiting for more event types
•  Newer variant available on some systems: epoll

29

Select

int select (int num_fds, fd_set* read_set,

 fd_set* write_set, fd_set* except_set,

 struct timeval* timeout);

Wait for readable/writable file descriptors.

Return:
•  Number of descriptors ready
•  -1 on error, sets errno

Parameters:
•  num_fds:

  number of file descriptors to check, numbered from 0
•  read_set, write_set, except_set:

  Sets (bit vectors) of file descriptors to check for the specific condition
•  timeout:

  Time to wait for a descriptor to become ready

30

File Descriptor Sets

Bit vectors
•  Often 1024 bits, only first num_fds checked
•  Macros to create and check sets

fds_set myset;
void FD_ZERO (&myset); /* clear all bits */
void FD_SET (n, &myset); /* set bits n to 1 */
void FD_CLEAR (n, &myset); /* clear bit n */
int FD_ISSET (n, &myset); /* is bit n set? */

31

File Descriptor Sets

Three conditions to check for
•  Readable

  Data available for reading
•  Writable

  Buffer space available for writing
•  Exception

  Out-of-band data available (TCP)

32

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

 ASSERT(FD_ISSET(0, &my_read);

 /* data ready on stdin */

33

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int timeout);

Poll file descriptors for events.

Return:
•  Number of descriptors with events
•  -1 on error, sets errno

Parameters:
•  pfds:

  An array of descriptor structures. File descriptors, desired events and returned events
•  nfds:

  Length of the pfds array
•  timeout:

  Timeout value in milliseconds

34

Descriptors

Structure
struct pollfd {

 int fd; /* file descriptor */

 short events; /* queried event bit mask */

 short revents; /* returned event mask */

Note:
•  Any structure with fd < 0 is skipped

35

Event Flags

POLLIN:
•  data available for reading

POLLOUT:
•  Buffer space available for writing

POLLERR:
•  Descriptor has error to report

POLLHUP:
•  Descriptor hung up (connection closed)

POLLVAL:
•  Descriptor invalid

36

Poll: Example

struct pollfd my_pfds[1];

my_pfds[0].fd = 0;

my_pfds[0].events = POLLIN;

if (poll(&my_pfds, 1, INFTIM) == 1) {

 ASSERT (my_pfds[0].revents & POLLIN);

 /* data ready on stdin */

37

Bonus Slides!

38

IPC Solutions

Two options
•  Support some form of shared address space

  Shared memory, memory mapped files
•  Use OS mechanisms to transport data from one address

space to another
  Pipes, FIFOs
  Messages, signals

39

Message-based IPC

 Message system
 Enables communication without resorting to shared variables

 To communicate, processes P and Q must
 Establish a communication link between them
 Exchange messages

 Two operations
 send(message)
 receive(message)

40

Message Passing

Process A Process B
Direct

Process A Process C

Indirect

Process B

41

Direct Message Passing

 Processes must name each other explicitly
 send (P, message)

  Send a message to process P
 receive(Q, message)

  Receive a message from process Q
 receive(&id, message)

  Receive a message from any process

 Link properties
 Established automatically
 Associated with exactly one pair of processes
 There exists exactly one link between each pair

 Limitation
 Must know the name or ID of the process(es)

42

Indirect Message Passing

 Process names a mailbox (or port)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Link properties
 Established only if processes share a common mailbox
 May be associated with many processes
 Each pair of processes may share multiple links
 Link may be unidirectional or bi-directional

43

Mailbox Ownership

Process
•  Only the owner receives messages through

mailbox
•  Other processes only send.
•  When process terminates, any “owned” mailboxes

are destroyed

System
•  Process that creates mailbox owns it (and so may

receive through it) but may transfer ownership to
another process.

44

Indirect Message Passing

Mailboxes are a resource
•  Create and Destroy

Primitives
•  send(A, message)

  Send a message to mailbox A
•  receive(A, message)

  Receive a message from mailbox A

45

Indirect Message Passing

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Options
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive operation
 Allow the system to arbitrarily select the receiver and notify the

sender

46

IPC and Synchronization

 Blocking == synchronous
 Blocking send

  Sender blocks until the message is received
 Blocking receive

  Receiver blocks until a message is available

 Non-blocking == asynchronous
 Non-blocking send

  Sender sends the message and continues
 Non-blocking receive

  Receiver receives a valid message or null

47

Buffering

 IPC message queues
1.  Zero capacity

  No messages may be queued
  Sender must wait for receiver

2.  Bounded capacity
  Finite buffer of n messages
  Sender blocks if link is full

3.  Unbounded capacity
  Infinite buffer space
  Sender never blocks

48

Buffering

Is a buffer needed?

P1: send(P2, x) P2: receive(P1, x)

 receive(P2, y) send(P1, y)

Is a buffer needed?

P1: send(P2, x) P2: send(P1, x)

 receive(P2, y) receive(P1, y)

49

Example: Message Passing

void Producer() {
 while (TRUE) {
 /* produce item */
 build_message(&m, item);
 send(consumer, &m);
 receive(consumer, &m); /* wait for ack */
 }

}

void Consumer {

 while(TRUE) {
 receive(producer, &m);
 extract_item(&m, &item);
 send(producer, &m); /* ack */
 /* consume item */
 }

}

50

Signals == Messages

Signals are a simple form of message passing
•  Non-blocking
•  No buffering

