Interprocess Communication

CS 241

April 2, 2012

University of Illinois

Where we are in 241

C basics

Memory

Processes

Threads

Scheduling

Synchronization

Interprocess communication

Networking

Filesystems

Interprocess Communciation

What is IPC?

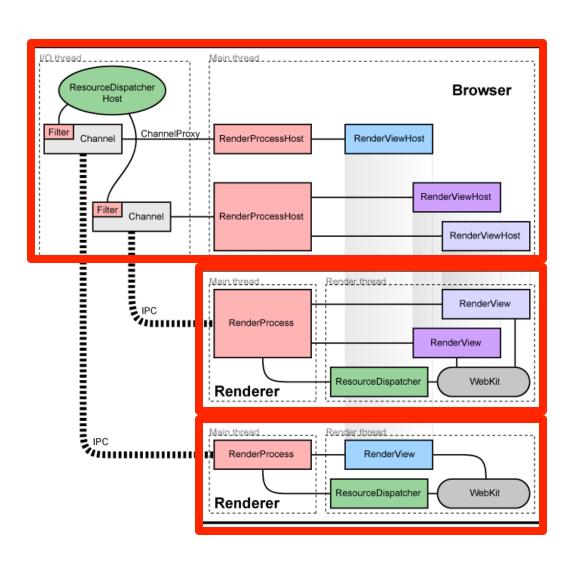
• Mechanisms to transfer data between processes

Why is it needed?

 Not all important procedures can be easily built in a single process

Interprocess Communication

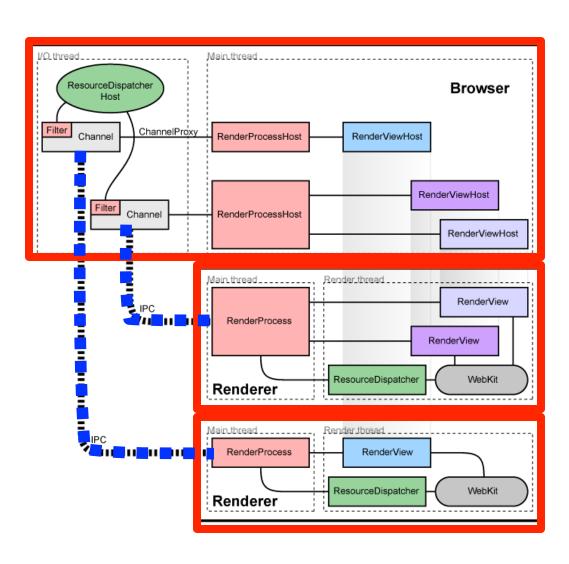
Cooperating processes


- O Can affect or be affected by other processes, including sharing data
 - Just like cooperating threads!
- O Benefits
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience

Interprocess Communication

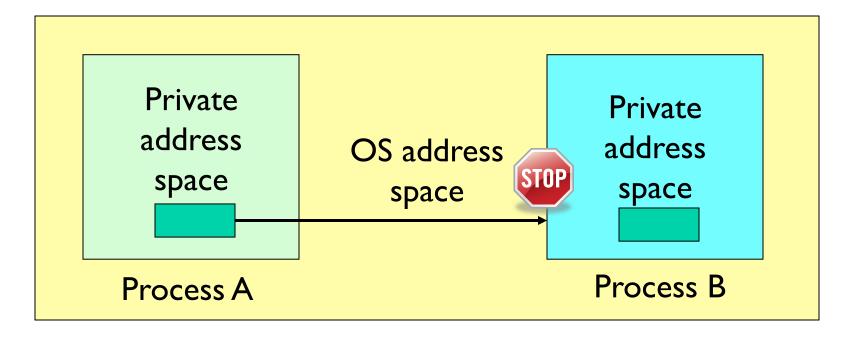
Can you think of a common use of IPC?

Can you think of any large applications that use IPC?


Google Chrome architecture (figure borrowed from Google)

Separate processes for browser tabs to protect the overall application from bugs and glitches in the rendering engine

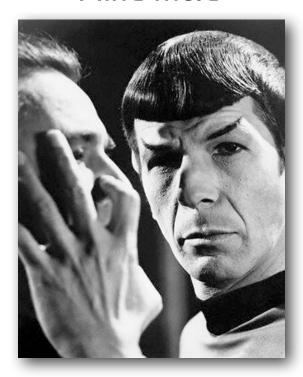
Restricted access from each rendering engine process to others and to the rest of the system


Google Chrome architecture (figure borrowed from Google)

A named pipe is allocated for each renderer process for communication with the browser process

Pipes are used in asynchronous mode to ensure that neither end is blocked waiting for the other

IPC Communications Model

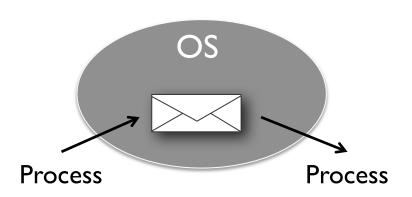

Each process has a private address space

No process can write to another process's space

How can we get data from process A to process B?

Two kinds of IPC

"Mind meld"



Shared address space

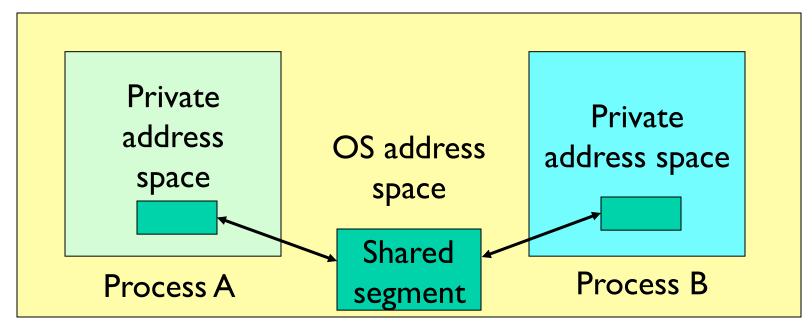
- Shared memory
- Memory mapped files

Today

"Intermediary"

Message transported by OS from one address space to another

- Files
- Pipes
- FIFOs

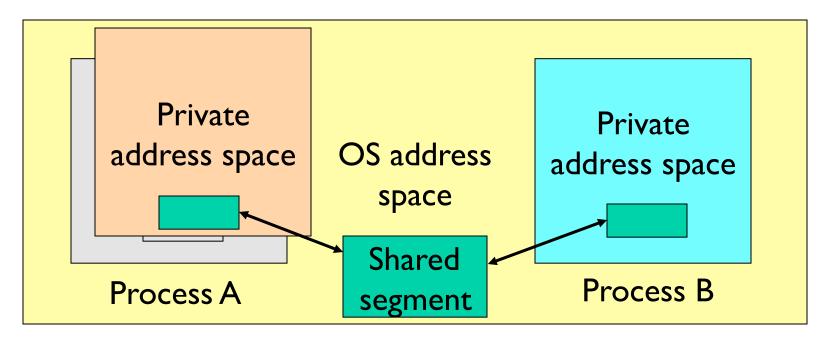

Shared Memory

Processes share the same segment of memory directly

- Memory is mapped into the address space of each sharing process
- Memory is persistent beyond the lifetime of the creating or modifying processes (until deleted)

Mutual exclusion must be provided by processes using the shared memory

Shared Memory



Processes request the segment

OS maintains the segment

Processes can attach/detach the segment

Shared Memory

Can mark segment for deletion on last detach

POSIX Shared Memory

```
#include <sys/types.h>
#include <sys/shm.h>
Create identifier ("key") for a shared memory segment
    key_t ftok(const char *pathname, int proj_id);
    k = ftok("/my/file", 0xaa);
```

Create shared memory segment

```
int shmget(key_t key, size_t size, int shmflg);
id = shmget(key, size, 0644 | IPC_CREAT);
```

Access to shared memory requires an attach

```
void *shmat(int shmid, const void *shmaddr, int shmflg);
shared_memory = (char *) shmat(id, (void *) 0, 0);
```

POSIX Shared Memory

Write to the shared memory using normal system calls

```
sprintf(shared_memory, "Writing to shared
  memory");
```

Detach the shared memory from its address space

```
int shmdt(const void *shmaddr);
shmdt(shared_memory);
```

Shared Memory example

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHM SIZE 1024 /* a 1K shared memory segment */
int main(int argc, char *argv[]) {
  key t key;
   int shmid;
   char *data;
   int mode;
```

Shared Memory example

```
/* make the key: */
if ((key = ftok("shmdemo.c", 'R')) == -1) {
   perror("ftok");
   exit(1);
/* connect to (and possibly create) the segment: */
if ((shmid = shmget(key, SHM SIZE, 0644 | IPC CREAT)) == -1) {
   perror("shmget");
   exit(1);
/* attach to the segment to get a pointer to it: */
data = shmat(shmid, (void *)0, 0);
if (data == (char *) (-1)) {
   perror("shmat");
   exit(1);
```

Shared Memory example

```
/* read or modify the segment, based on the command line: */
if (argc == 2) {
   printf("writing to segment: \"%s\"\n", argv[1]);
   strncpy(data, argv[1], SHM_SIZE);
} else
   printf("segment contains: \"%s\"\n", data);
/* detach from the segment: */
if (shmdt(data) == -1) {
   perror("shmdt");
   exit(1);
return 0;
```

Run demo

Memory Mapped Files

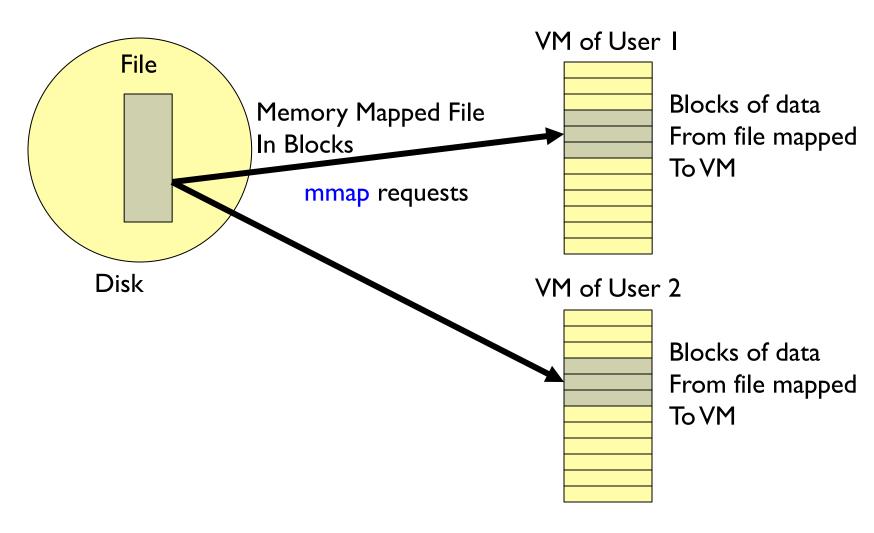
Memory-mapped file I/O

- Map a disk block to a page in memory
- Allows file I/O to be treated as routine memory access

Use

- File is initially read using demand paging
 - i.e., loaded from disk to memory only at the moment it's needed
- When needed, a page-sized portion of the file is read from the file system into a physical page of memory
- Subsequent reads/writes to/from that page are treated as ordinary memory accesses

Memory Mapped Files


Traditional File I/O

- Calls to file I/O functions (e.g., read() and write())
 - First copy data to a kernel's intermediary buffer
 - Then transfer data to the physical file or the process
- Intermediary buffering is slow and expensive

Memory Mapping

- Eliminate intermediary buffering
- Significantly improve performance
- Random-access interface

Memory Mapped Files

Memory Mapped Files: Benefits

```
Treats file I/O like memory access rather than read(), write() system calls
```

O Simplifies file access; e.g., no need to fseek ()

Streamlining file access

- O Access a file mapped into a memory region via pointers
- O Same as accessing ordinary variables and objects

Dynamic loading

- O Map executable files and shared libraries into address space
- O Programs can load and unload executable code sections dynamically

Memory Mapped Files: Benefits

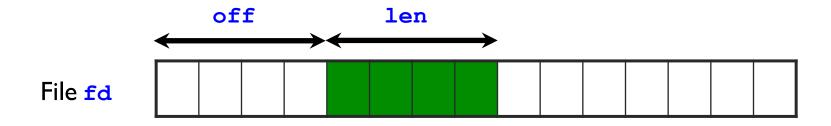
Several processes can map the same file

O Allows pages in memory to be shared -- saves memory space

Memory persistence

O Enables processes to share memory sections that persist independently of the lifetime of a certain process

Memory map a file


O Establish mapping from the address space of the process to the object represented by the file descriptor

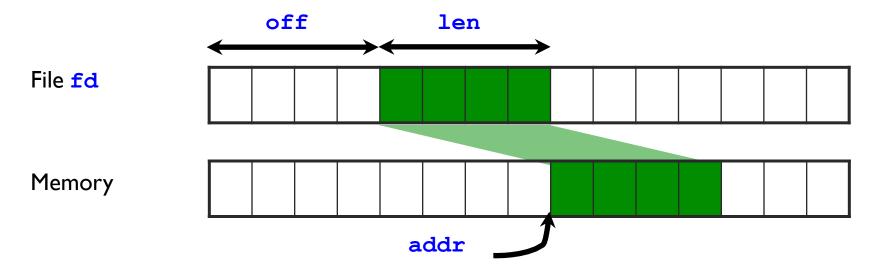
Parameters:

- addr: the starting memory address into which to map the file (not previously allocated with malloc; argument can just be NULL)
- O len: the length of the data to map into memory
- O prot: the kind of access to the memory mapped region
- O flags: flags that can be set for the system call
- of the descriptor
- O off: the offset in the file to start mapping from

Memory map a file

• Establish mapping from the address space of the process to the object represented by the file descriptor

Memory map a file


• Establish a mapping between the address space of the process to the memory object represented by the file descriptor

Return value: pointer to mapped region

- On success, implementation-defined function of addr and flags.
- On failure, sets errno and returns MAP FAILED

Memory map a file

• Establish a mapping between the address space of the process to the memory object represented by the file descriptor

mmap options

Protection Flags

PROT_READ
 Data can be read

PROT_WRITE
 Data can be written

PROT_EXEC
 Data can be executed

PROT NONE
 Data cannot be accessed

Flags

MAP_SHARED Changes are shared.

• MAP_PRIVATE Changes are private.

MAP_FIXED
 Interpret addr exactly

mmap example

```
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>

static const int MAX_INPUT_LENGTH = 20;
int main(int argc, char** argv) {
    ....
```

mmap example

```
int main(int argc, char** argv) {
    int
          fd;
    char * shared_mem;
    fd = open(argv[1], 0_RDWR | 0_CREAT);
    shared_mem = mmap(NULL, MAX_INPUT_LENGTH, PROT_READ | PROT_WRITE,
                      MAP_SHARED, fd, 0);
    close(fd);
    if (!strcmp(argv[2], "read")) {
        while (1) {
            shared_mem[MAX_INPUT_LENGTH-1] = '\0';
            printf("%s", shared_mem);
            sleep(1);
    else if (!strcmp(argv[2], "write"))
        while (1)
            fgets(shared_mem, MAX_INPUT_LENGTH, stdin);
    else
        printf("Unrecognized command\n");
                                                           Run demo!
```

munmap

```
#include <sys/mman.h>
int munmap(void *addr, size_t len);
Remove a mapping
```

Return value

- 0 on success
- -I on error, sets errno

Parameters:

- addr: returned from mmap()
- len: same as the len passed to mmap()

msync

```
#include <sys/mman.h>
int msync(void *addr, size_t len, int flags);
```

Write all modified data to permanent storage locations

Return value

- 0 on success
- -1 on error, sets errno

Parameters:

- addr: returned from mmap()
- len: same as the len passed to mmap()
- flags:
 - MS ASYNC = Perform asynchronous writes
 - MS SYNC = Perform synchronous writes
 - MS_INVALIDATE = Invalidate cached data

Recall POSIX Shared Memory...

```
#include <sys/types.h>
#include <sys/shm.h>
Create identifier ("key") for a shared memory segment
    key_t ftok(const char *pathname, int proj_id);
    k = ftok("/my/file", 0xaa);
```

Create shared memory segment

```
int shmget(key_t key, size_t size, int shmflg);
id = shmget(key, size, 0644 | IPC_CREAT);
```

Access to shared memory requires an attach

```
void *shmat(int shmid, const void *shmaddr, int shmflg);
shared_memory = (char *) shmat(id, (void *) 0, 0);
```

How do mmap and POSIX shared memory compare?

Persistence!

shared memory

- Kept in memory
- Remains available until system is shut down

mmap

- Backed by a file
- Persists even after programs quit or machine reboots