
1

Interprocess Communication

CS 241

April 2, 2012

University of Illinois

2

Where we are in 241

C basics

Memory

Processes

Threads

Scheduling

Synchronization

Interprocess communication

Networking

Filesystems

3

Interprocess Communciation

What is IPC?
•  Mechanisms to transfer data between processes

Why is it needed?
•  Not all important procedures can be easily built in a single

process

4

Interprocess Communication

 Cooperating processes
 Can affect or be affected by other processes, including sharing

data
  Just like cooperating threads!

 Benefits
  Information sharing
 Computation speedup
 Modularity
 Convenience

5

Interprocess Communication

Can you think of a common use of IPC?

Can you think of any large applications that use IPC?

6

Google Chrome architecture (figure
borrowed from Google)

Separate processes for
browser tabs to protect
the overall application
from bugs and glitches in
the rendering engine

Restricted access from
each rendering engine
process to others and to
the rest of the system ht

tp
s:/

/si
te

s.g
oo

gle
.co

m
/a

/ch
ro

m
ium

.o
rg

/d
ev

/d
ev

elo
pe

rs
/d

es
ign

-d
oc

um
en

ts/
m

ult
i-p

ro
ce

ss
-a

rc
hit

ec
tu

re

7

Google Chrome architecture (figure
borrowed from Google)

A named pipe is
allocated for each
renderer process for
communication with the
browser process

Pipes are used in
asynchronous mode to
ensure that neither end
is blocked waiting for
the other

ht
tp

s:/
/si

te
s.g

oo
gle

.co
m

/a
/ch

ro
m

ium
.o

rg
/d

ev
/d

ev
elo

pe
rs

/d
es

ign
-d

oc
um

en
ts/

m
ult

i-p
ro

ce
ss

-a
rc

hit
ec

tu
re

8

IPC Communications Model

Each process has a private address space

No process can write to another process’s space

How can we get data from process A to process B?

OS address
space

Process A Process B

Private
address
space

Private
address
space

9

Two kinds of IPC
“Mind meld” “Intermediary”

Process

OS

Process

Shared address space
•  Shared memory
•  Memory mapped files

Message transported by OS
from one address space to
another

•  Files
•  Pipes
•  FIFOs Today

10

Shared Memory

Processes share the same segment of memory directly
•  Memory is mapped into the address space of each sharing

process
•  Memory is persistent beyond the lifetime of the creating or

modifying processes (until deleted)

Mutual exclusion must be provided by processes using
the shared memory

11

Shared Memory

Processes request the segment

OS maintains the segment

Processes can attach/detach the segment

OS address
space

Private
address space

Process A Process B

Private
address
space

Shared
segment

12

Shared Memory

Can mark segment for deletion on last detach

OS address
space

Process A Process B

Private
address
space

Shared
segment

Private
address space

Private
address space

13

POSIX Shared Memory
#include <sys/types.h>

#include <sys/shm.h>

Create identifier (“key”) for a shared memory segment
 key_t ftok(const char *pathname, int proj_id);

k = ftok(“/my/file”, 0xaa);

Create shared memory segment

 int shmget(key_t key, size_t size, int shmflg);
id = shmget(key, size, 0644 | IPC_CREAT);

Access to shared memory requires an attach

 void *shmat(int shmid, const void *shmaddr, int shmflg);

 shared_memory = (char *) shmat(id, (void *) 0, 0);

14

POSIX Shared Memory

Write to the shared memory using normal system calls
sprintf(shared_memory, "Writing to shared
memory");

Detach the shared memory from its address space
int shmdt(const void *shmaddr);
shmdt(shared_memory);

15

Shared Memory example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {
 key_t key;
 int shmid;
 char *data;
 int mode;

16

 /* make the key: */
 if ((key = ftok(”shmdemo.c", 'R')) == -1) {
 perror("ftok");
 exit(1);
 }
 /* connect to (and possibly create) the segment: */
 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {
 perror("shmget");
 exit(1);
 }
 /* attach to the segment to get a pointer to it: */
 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(-1)) {
 perror("shmat");
 exit(1);
 }

Shared Memory example

17

 /* read or modify the segment, based on the command line: */
 if (argc == 2) {
 printf("writing to segment: \"%s\"\n", argv[1]);
 strncpy(data, argv[1], SHM_SIZE);
 } else
 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */
 if (shmdt(data) == -1) {
 perror("shmdt");
 exit(1);
 }

 return 0;

}

Shared Memory example

Run demo

18

Memory Mapped Files

Memory-mapped file I/O
•  Map a disk block to a page in memory
•  Allows file I/O to be treated as routine memory access

Use
•  File is initially read using demand paging

  i.e., loaded from disk to memory only at the moment it’s
needed

•  When needed, a page-sized portion of the file is read from the
file system into a physical page of memory

•  Subsequent reads/writes to/from that page are treated as
ordinary memory accesses

19

Memory Mapped Files

Traditional File I/O
•  Calls to file I/O functions (e.g., read() and write())

  First copy data to a kernel's intermediary buffer
  Then transfer data to the physical file or the process

•  Intermediary buffering is slow and expensive

Memory Mapping
•  Eliminate intermediary buffering
•  Significantly improve performance
•  Random-access interface

20

Memory Mapped Files

Memory Mapped File
In Blocks

VM of User 1

mmap requests

Disk

File
Blocks of data
From file mapped
To VM

VM of User 2

Blocks of data
From file mapped
To VM

21

Memory Mapped Files: Benefits

Treats file I/O like memory access rather than read(),
write() system calls

 Simplifies file access; e.g., no need to fseek()

 Streamlining file access
 Access a file mapped into a memory region via pointers
 Same as accessing ordinary variables and objects

 Dynamic loading
 Map executable files and shared libraries into address space
 Programs can load and unload executable code sections dynamically

22

Memory Mapped Files: Benefits

 Several processes can map the same file
 Allows pages in memory to be shared -- saves memory space

 Memory persistence
 Enables processes to share memory sections that persist

independently of the lifetime of a certain process

Enables IPC!

23

POSIX Memory Mapping
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file
  Establish mapping from the address space of the process to the object represented by

the file descriptor

 Parameters:
  addr: the starting memory address into which to map the file (not previously

allocated with malloc; argument can just be NULL)
  len: the length of the data to map into memory
  prot: the kind of access to the memory mapped region
  flags: flags that can be set for the system call
  fd: file descriptor
  off: the offset in the file to start mapping from

24

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

Memory map a file
•  Establish mapping from the address space of the process to the object

represented by the file descriptor

File fd

len off

25

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

Memory map a file
•  Establish a mapping between the address space of the process to the

memory object represented by the file descriptor

Return value: pointer to mapped region
•  On success, implementation-defined function of addr and flags.
•  On failure, sets errno and returns MAP_FAILED

26

POSIX Memory Mapping
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

Memory map a file
•  Establish a mapping between the address space of the process

to the memory object represented by the file descriptor

File fd

Memory

addr

len off

27

mmap options

Protection Flags
•  PROT_READ Data can be read
•  PROT_WRITE Data can be written
•  PROT_EXEC Data can be executed
•  PROT_NONE Data cannot be accessed

Flags
•  MAP_SHARED Changes are shared.
•  MAP_PRIVATE Changes are private.
•  MAP_FIXED Interpret addr exactly

28

mmap example

#include <stdio.h>  
#include <stdlib.h>  
#include <errno.h>  
#include <fcntl.h>  
#include <string.h>  
#include <sys/mman.h>  
#include <sys/types.h>  
#include <sys/stat.h>  
 
static const int MAX_INPUT_LENGTH = 20;  
 
int main(int argc, char** argv) {  

29

mmap example

int main(int argc, char** argv) {  
 int fd;  
 char * shared_mem;  
 fd = open(argv[1], O_RDWR | O_CREAT);  
 shared_mem = mmap(NULL, MAX_INPUT_LENGTH, PROT_READ | PROT_WRITE,	
 MAP_SHARED, fd, 0);  
 close(fd);  
 
 if (!strcmp(argv[2], "read")) {  
 while (1) {  
 shared_mem[MAX_INPUT_LENGTH-1] = '\0';  
 printf("%s", shared_mem);  
 sleep(1);  
 }  
 }  
 else if (!strcmp(argv[2], "write"))  
 while (1)  
 fgets(shared_mem, MAX_INPUT_LENGTH, stdin);  
 else  
 printf("Unrecognized command\n");  
}

Run demo!

30

munmap

#include <sys/mman.h>

int munmap(void *addr, size_t len);

Remove a mapping

Return value
•  0 on success
•  -1 on error, sets errno

Parameters:
•  addr: returned from mmap()
•  len: same as the len passed to mmap()

31

msync

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Write all modified data to permanent storage locations

Return value
•  0 on success
•  -1 on error, sets errno

Parameters:
•  addr: returned from mmap()
•  len: same as the len passed to mmap()
•  flags:

  MS_ASYNC = Perform asynchronous writes
  MS_SYNC = Perform synchronous writes
  MS_INVALIDATE = Invalidate cached data

32

Recall POSIX Shared Memory...
#include <sys/types.h>

#include <sys/shm.h>

Create identifier (“key”) for a shared memory segment
 key_t ftok(const char *pathname, int proj_id);

k = ftok(“/my/file”, 0xaa);

Create shared memory segment

 int shmget(key_t key, size_t size, int shmflg);
id = shmget(key, size, 0644 | IPC_CREAT);

Access to shared memory requires an attach

 void *shmat(int shmid, const void *shmaddr, int shmflg);

 shared_memory = (char *) shmat(id, (void *) 0, 0);

33

How do mmap and POSIX shared
memory compare?
Persistence!

shared memory
•  Kept in memory
•  Remains available until system is shut down

mmap
•  Backed by a file
•  Persists even after programs quit or machine reboots

