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Deadlock: definition 

There exists a cycle of processes such that each process 
cannot proceed until the next process takes some specific 
action. 

Result: all processes in the cycle are stuck! 
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Deadlock solutions 

Prevention 
•  Design system so that deadlock is impossible 

Avoidance 
•  Steer around deadlock with smart scheduling 

Detection & recovery 
•  Check for deadlock periodically 
•  Recover by killing a deadlocked processes and releasing its resources 

Do nothing 
•  Prevention, avoidance and detection/recovery are expensive 
•  If deadlock is rare, is it worth the overhead? 
•  Manual intervention (kill processes, reboot) if needed 
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Last time: Deadlock Prevention 

#1: No mutual exclusion 
•  Thank you, Captain Obvious 

#2: Allow preemption 
•  OS can revoke resources from current owner 

#3: No hold and wait 
•  When waiting for a resource, must not currently hold any resource 

#4: Request resources in order 
•  When waiting for resource i, must not currently hold any resource j > i 
•  As you can see: If your program satisfies #3 then it satisfies #4 



5 

“Request In Order” is more permissive 

Will not deadlock Might deadlock 
(depending on 

scheduler, inputs, etc.) 

Definitely 
deadlock 

Request in order 

No hold 
and wait 

All programs 
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Are we always in trouble without 
ordering resources? 

 No, not always: 

Ordered resource requests are sufficient to avoid 
deadlock, but not necessary 

Convenient, but may be conservative 

3 
4 

7 
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Q: What’s the rule of the road? 

What’s the law? Does it resemble one of the rules we saw? 

I can almost 
get across Drat! 
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Deadlock Avoidance 
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Deadlock Avoidance 

Idea: Steer around deadlock with smart scheduling 

Assume OS knows: 
•  Number of available instances of each resource 

  Each individual mutex lock is a resource with one instance available 
  Each individual semaphore is a resource with possibly multiple 

“instances” available 
•  For each process, current amount of each resource it owns 
•  For each process, maximum amount of each resource it might ever 

need 
  For a mutex this means: Will the process ever lock the mutex? 

Assume processes are independent 
•  If one blocks, others can finish if they have enough resources 
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How to guide the system down a safe 
path of execution 
Helper function: is a given state safe? 

•  Safe = there’s definitely a way to finish the processes without deadlock 

When a resource allocation request arrives 
•  Pretend that we approve the request 
•  Call function: Would we then be safe?  
•  If safe, 

  Approve request 
•  Otherwise, 

  Block process until its request can be safely approved 
  Some other process is scheduled in the meantime 

This is called the Banker’s Algorithm 
•  Dijkstra, 1965 
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What is a state? 

For each resource, 
•  Current amount available 
•  Current amount allocated to each process 
•  Future amount needed by each process (maximum) 

 

Free 

P1 alloc 

P2 alloc 

P1 need 

P2 need 

Buffer space A mutex 
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When is a state safe? 

There is an execution order that can finish 

In general, that’s hard to predict 
•  So, we’re conservative: find sufficient conditions for safety 
•  i.e., make some pessimistic assumptions 

Pessimistic assumptions: 
•  A process might request its maximum resources at any time 
•  A process will never release its resources until it’s done 

All state
s 

Safe 

Unsafe 

Deadlocked 
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Computing safety 

“There is an execution order that can finish” 

Search for an order P1, P2, P3, ... such that: 
•  P1 can finish using what it has plus what’s free 
•  P2 can finish using what it has + what’s free + what P1 releases when it 

finishes 
•  P3 can finish using what it has + what’s free + what P1 and P2 will 

release when they finish 
•  ... 
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Computing safety 

“There is an execution order that can finish” 

More specifically... Search for an order P1, P2, P3, ... such that: 
•  P1’s max resource needs ≤ what it has + what’s free 
•  P2’s max resource needs ≤ what it has + what’s free + what P1 will 

release when it finishes 
•  P3’s max resource needs ≤ what it has + what’s free + what P1 and P2 

will release when they finish 
•  ... 

But how do we find that order? 
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Inspiration 
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Playing Pickup Sticks with Processes 

Pick up a stick on top 
•  = Find a process that can finish with what it has plus what’s free 

Remove stick 
•  = Process finshes & releases its resources 

Repeat until... 
•  ...all processes have finished  

  Answer: safe 
•  ...or we get stuck  

  Answer: unsafe 
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Try it: is this state safe? 

P2 alloc 

Buffer space A mutex 
Free 

P2 need 

P1 alloc 

P1 need 

Which 
process can 

go first? 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Start with P2 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Release P2’s 

resources 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Release P2’s 

resources 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Continue with 

P1 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 
Continue with 

P1 

Buffer space A mutex 
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Try it: is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

Yes, it’s safe:  
Order is P2, 

P1 

Buffer space A mutex 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Can P1 go first? 

Can P2 go first? 

Can P3 go first? 

Buffer space 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Buffer space 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Buffer space 
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Example 2: Is this state safe? 

P2 alloc 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 

Unsafe! 

Can P1 go next? 

Can P2 go next? 

Buffer space 
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Deadlock Detection 
& Recovery 
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Deadlock Detection 

Check to see if a deadlock has occurred! 

Special case: Single resource per type 
•  E.g., mutex locks (value is zero or one) 
•  Check for cycles in the resource allocation graph 

General case 
•  E.g., semaphores, memory pages, ... 
•  See book, p. 355 – 358 
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Dependencies between processes 

Resource allocation 
graph 

Corresponding 
process dependency 

graph 
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Deadlock Recovery 

Recovery idea: get rid of the cycles in 
the process dependency graph 

Options: 
•  Kill all deadlocked processes 
•  Kill one deadlocked process at a time 

and release its resources 
•  Steal one resource at a time 
•  Roll back all or one of the processes to 

a checkpoint that occurred before they 
requested any resources, then continue 
  Difficult to prevent indefinite 

postponement 
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Deadlock Recovery 

Have to kill 
one more 

Resource allocation 
graph 

Corresponding 
process dependency 

graph 
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Deadlock Recovery 

Only have 
to kill one 

Resource allocation 
graph 

Corresponding 
process dependency 

graph 
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Deadlock Recovery 

How should we pick a process to kill? 

We might consider... 
•  process priority 
•  current computation time and time to completion 
•  amount of resources used by the process 
•  amount of resources needed by the process to complete 
•  the minimal set of processes we need to eliminate to break deadlock 
•  is process interactive or batch? 
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Rollback instead of killing processes 

Selecting a victim 
•  Minimize cost of rollback (e.g., size of process’s memory) 

Rollback 
•  Return to some safe state 
•  Restart process for that state 
•  Note: Large, long computations are sometimes checkpointed for other 

reasons (reliability) anyway 

Challenge: Starvation 
•  Same process may always be picked as victim 
•  Fix: Include number of rollbacks in cost factor 
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Deadlock Summary 

Deadlock: cycle of processes/threads each waiting for the next 
•  Nasty timing-dependent bugs! 

Detection & Recovery 
•  Typically very expensive to kill / checkpoint processes 

Avoidance: steer around deadlock 
•  Requires knowledge of everything an application will request 
•  Expensive to perform on each scheduling event 

Prevention (ordered resources) 
•  Imposes conservative rules on application that preclude deadlock 
•  Application can do it; no special OS support 
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Deadlock Summary 

Typical solution: 
•  OS (Unix/Windows) do nothing (Ostrich Algorithm) 
•  Application uses general-purpose deadlock prevention 

Transaction systems (e.g., credit card processing) may use 
detection/recovery/avoidance 


