
1

Deadlock Solutions: Avoidance,
Detection, and Recovery

CS 241

March 30, 2012

University of Illinois

2

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

3

Deadlock solutions

Prevention
•  Design system so that deadlock is impossible

Avoidance
•  Steer around deadlock with smart scheduling

Detection & recovery
•  Check for deadlock periodically
•  Recover by killing a deadlocked processes and releasing its resources

Do nothing
•  Prevention, avoidance and detection/recovery are expensive
•  If deadlock is rare, is it worth the overhead?
•  Manual intervention (kill processes, reboot) if needed

4

Last time: Deadlock Prevention

#1: No mutual exclusion
•  Thank you, Captain Obvious

#2: Allow preemption
•  OS can revoke resources from current owner

#3: No hold and wait
•  When waiting for a resource, must not currently hold any resource

#4: Request resources in order
•  When waiting for resource i, must not currently hold any resource j > i
•  As you can see: If your program satisfies #3 then it satisfies #4

5

“Request In Order” is more permissive

Will not deadlock Might deadlock
(depending on

scheduler, inputs, etc.)

Definitely
deadlock

Request in order

No hold
and wait

All programs

6

Are we always in trouble without
ordering resources?

 No, not always:

Ordered resource requests are sufficient to avoid
deadlock, but not necessary

Convenient, but may be conservative

3
4

7
8

7

Q: What’s the rule of the road?

What’s the law? Does it resemble one of the rules we saw?

I can almost
get across Drat!

8

Deadlock Avoidance

9

Deadlock Avoidance

Idea: Steer around deadlock with smart scheduling

Assume OS knows:
•  Number of available instances of each resource

  Each individual mutex lock is a resource with one instance available
  Each individual semaphore is a resource with possibly multiple

“instances” available
•  For each process, current amount of each resource it owns
•  For each process, maximum amount of each resource it might ever

need
  For a mutex this means: Will the process ever lock the mutex?

Assume processes are independent
•  If one blocks, others can finish if they have enough resources

10

How to guide the system down a safe
path of execution
Helper function: is a given state safe?

•  Safe = there’s definitely a way to finish the processes without deadlock

When a resource allocation request arrives
•  Pretend that we approve the request
•  Call function: Would we then be safe?
•  If safe,

  Approve request
•  Otherwise,

  Block process until its request can be safely approved
  Some other process is scheduled in the meantime

This is called the Banker’s Algorithm
•  Dijkstra, 1965

11

What is a state?

For each resource,
•  Current amount available
•  Current amount allocated to each process
•  Future amount needed by each process (maximum)

Free

P1 alloc

P2 alloc

P1 need

P2 need

Buffer space A mutex

12

When is a state safe?

There is an execution order that can finish

In general, that’s hard to predict
•  So, we’re conservative: find sufficient conditions for safety
•  i.e., make some pessimistic assumptions

Pessimistic assumptions:
•  A process might request its maximum resources at any time
•  A process will never release its resources until it’s done

All state
s

Safe

Unsafe

Deadlocked

13

Computing safety

“There is an execution order that can finish”

Search for an order P1, P2, P3, ... such that:
•  P1 can finish using what it has plus what’s free
•  P2 can finish using what it has + what’s free + what P1 releases when it

finishes
•  P3 can finish using what it has + what’s free + what P1 and P2 will

release when they finish
•  ...

14

Computing safety

“There is an execution order that can finish”

More specifically... Search for an order P1, P2, P3, ... such that:
•  P1’s max resource needs ≤ what it has + what’s free
•  P2’s max resource needs ≤ what it has + what’s free + what P1 will

release when it finishes
•  P3’s max resource needs ≤ what it has + what’s free + what P1 and P2

will release when they finish
•  ...

But how do we find that order?

15

Inspiration

16

Playing Pickup Sticks with Processes

Pick up a stick on top
•  = Find a process that can finish with what it has plus what’s free

Remove stick
•  = Process finshes & releases its resources

Repeat until...
•  ...all processes have finished

  Answer: safe
•  ...or we get stuck

  Answer: unsafe

17

Try it: is this state safe?

P2 alloc

Buffer space A mutex
Free

P2 need

P1 alloc

P1 need

Which
process can

go first?

18

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Start with P2

Buffer space A mutex

19

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Release P2’s

resources

Buffer space A mutex

20

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Release P2’s

resources

Buffer space A mutex

21

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Continue with

P1

Buffer space A mutex

22

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need
Continue with

P1

Buffer space A mutex

23

Try it: is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

Yes, it’s safe:
Order is P2,

P1

Buffer space A mutex

24

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Can P1 go first?

Can P2 go first?

Can P3 go first?

Buffer space

25

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Buffer space

26

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Buffer space

27

Example 2: Is this state safe?

P2 alloc

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Unsafe!

Can P1 go next?

Can P2 go next?

Buffer space

28

Deadlock Detection
& Recovery

29

Deadlock Detection

Check to see if a deadlock has occurred!

Special case: Single resource per type
•  E.g., mutex locks (value is zero or one)
•  Check for cycles in the resource allocation graph

General case
•  E.g., semaphores, memory pages, ...
•  See book, p. 355 – 358

30

Dependencies between processes

Resource allocation
graph

Corresponding
process dependency

graph

31

Deadlock Recovery

Recovery idea: get rid of the cycles in
the process dependency graph

Options:
•  Kill all deadlocked processes
•  Kill one deadlocked process at a time

and release its resources
•  Steal one resource at a time
•  Roll back all or one of the processes to

a checkpoint that occurred before they
requested any resources, then continue
  Difficult to prevent indefinite

postponement

32

Deadlock Recovery

Have to kill
one more

Resource allocation
graph

Corresponding
process dependency

graph

33

Deadlock Recovery

Only have
to kill one

Resource allocation
graph

Corresponding
process dependency

graph

34

Deadlock Recovery

How should we pick a process to kill?

We might consider...
•  process priority
•  current computation time and time to completion
•  amount of resources used by the process
•  amount of resources needed by the process to complete
•  the minimal set of processes we need to eliminate to break deadlock
•  is process interactive or batch?

35

Rollback instead of killing processes

Selecting a victim
•  Minimize cost of rollback (e.g., size of process’s memory)

Rollback
•  Return to some safe state
•  Restart process for that state
•  Note: Large, long computations are sometimes checkpointed for other

reasons (reliability) anyway

Challenge: Starvation
•  Same process may always be picked as victim
•  Fix: Include number of rollbacks in cost factor

36

Deadlock Summary

Deadlock: cycle of processes/threads each waiting for the next
•  Nasty timing-dependent bugs!

Detection & Recovery
•  Typically very expensive to kill / checkpoint processes

Avoidance: steer around deadlock
•  Requires knowledge of everything an application will request
•  Expensive to perform on each scheduling event

Prevention (ordered resources)
•  Imposes conservative rules on application that preclude deadlock
•  Application can do it; no special OS support

37

Deadlock Summary

Typical solution:
•  OS (Unix/Windows) do nothing (Ostrich Algorithm)
•  Application uses general-purpose deadlock prevention

Transaction systems (e.g., credit card processing) may use
detection/recovery/avoidance

